Paesaggi carsici nel Friuli Venezia Giulia
Paesaggi carsici
nel Friuli Venezia Giulia
Indice

9 Prefazione
11 I siti carsici del Friuli Venezia Giulia
13 Cenni di carsogenesi
25 Caratteri geologici e geomorfologici del Friuli Venezia Giulia
31 I paesaggi carsici
35 La colonizzazione vegetale nelle aree carsificate
47 Il carsismo del Cansiglio–Cavallo
55 Il carsismo delle Prealpi Carniche
71 Il carsismo delle Alpi Carniche
79 Il carsismo delle Alpi Giulie
91 Il carsismo delle Prealpi Giulie
103 Il Carso Classico
La bellezza del paesaggio carsico è frutto di un ambiente capace di mille commistioni tra massicci montuosi spettacolari, come quello del Canin, e impressionanti formazioni ipogee; tra pietre affioranti in mezzo alla vegetazione e minuscole piante colonizzatrici aggrovellate ai calcare alle quote più elevate; tra sfondi marini e collinari incontaminati da essenze legnose e l’intreccio di tetti e muretti a secco che sbucano tra arbusti, orti, pastini cultivati a vite e tratti boschivi. Il Friuli Venezia Giulia è ricco di questi scenari e nella loro forma più integra e naturale essi caratterizzano gran parte dei nostri sistemi montuosi, spaziando dall’Altipiano del Cansiglio alle Prealpi Giulie per arrivare al Carso Classico, dove da sempre è più forte l’interazione tra uomo e natura. Se il carisma rende così speciale il territorio montano di questa regione, è in quest’ultima parte, estesa in Italia dall’Isonzo a Trieste, che troviamo l’area carsica per eccellenza. Ed è sempre qui che l’intervento umano ha lasciato tracce evidenti, sostituendo un’area brulla (frutto di disboscamenti attuati nei secoli precedenti) con un susseguirsi di boschetti, doline e radure erbose da cui affiorano le antiche pietralie e dove prospera, infestante, il sommaco. Il verde diffuso è dovuto al timbroscimento attuato a cavallo del secolo scorso e ispirato da Domenico Rossetti. Un’ impresa epica che ebbe comunque i suoi contestatori, dal momento che non mancarono i carsoni impegnati a contrastare a suon di fašo la preziosa trasformazione del loro territorio. Attessegiamento distruttivo che persino Slataper ricorda nei “Il mio Carso”, il libro dedicato a questo luogo così singolare e affascinante.

Così come accade per tutte le manifestazioni del carsismo in Friuli Venezia Giulia, oggi il Carso è giustamente rispettato, ed i suoi borghi sembrano gli aggiomerati dei presepi. Curati e sempre più di frequente restaurati, i vecchi edifici sono tutt’uno con la natura che li circonda, mentre i profumi della vegetazione e dei giardini si confondono con l’odore della legna bruciata negli sparperhi, nuovamente di moda e sempre più spesso riesumati in case antiche e nuove. Più che alla stretta conservazione dell’ambiente, così importante per la valorizzazione del nostro patrimonio di paesaggi carsici d’alta quota, qui le istituzioni ed i Comuni impegnati a vegliare sulla sopravvivenza delle tradizioni mirano alla conservazione di aspetti naturalistici che sono tutt’uno con il retaggio storico delle popolazioni. Una scelta culturale oltre che paesaggistica ed architettonica, ma da sempre alla base di un mix di attenzione e di lottizzazione finalizzata allo sviluppo sociale ed economico di quest’area.

Da quando ci vivo, sono ovviamente più attenta e partecipe delle vicende e delle aspirazioni del Carso in quanto territorio portato ad evolversi, oltre che a continuare ad essere un prezioso polo mone alle spalle di Gorizia e Trieste. Sento così parlare di attrazioni turistiche, di vecchie case che diventano sedi d’apprendimento di mestieri quasi scomparsi, di musei di guerra all’aria aperta, del recupero di aziende rurali, di un’enologia raffinata e di ricchezza custode delle tradizioni ma attenta al mercato. Obiettivi che condivido, in un’azione di governo in cui, per quanto mi compete, hanno ruolo sostanziale i rapporti tra la Regione e le Autonomie locali e l’elaborazione di un Piano territoriale e di un Piano paesaggistico che siano funzionali alle esigenze di questa regione e sostituiscano finalmente l’ormai obsoleto Purg del 1978.

Tra le fresche appese ai lampi ad indicare l’osanna di turno, nella parola slavo-italiana, nei dolci ricchi e profumati, ritrovo intanto sentori che sono tutt’uno con l’aspettiva della pietra candida che s’imprima alla vista tra i cespugli di ginestre prima di tuffarsi in mare. Questa, come ben sa chi lo conosce, è la grazia del Carso Classico: simbolo mondiale del carsismo, è un territorio piccolo ma unico per quanto rappresenta e ciò che offre a chi lo ama. Io non sarei fermo a meno.

FedERICA SEGANTI
Assessore alla Sicurezza,
Autonomie Locali e Pianificazione territoriale della Regione Autonoma Friuli Venezia Giulia
Nella prospettiva della redazione di un piano paesaggistico regionale, questo volume vuole essere un contributo di conoscenza del fenomeno "carsismo" dal punto di vista paesaggistico in chiave percettiva, ma non solo: vuole anche richiamarne i complessi processi chimici, fisici, biologici che strutturano e definiscono paesaggi e forme di particolare ricchezza e forza espressiva, tanto da ispirare l'opera di scultori, pittori, poeti.

Un paesaggio aspro, ma al tempo stesso delicato, da conoscere, da difendere e tutelare.

Al Carso triestino e goriziano va subito anche la memoria storica, in quanto teatro di vicende che hanno segnato la storia dello scorso XX° secolo; ma anche luogo d'origine delle esplorazioni sistematiche dell'ambiente ipogeo, della diffusione della speleologia, e della formazione del primo Catasto delle grotte.

Com'è noto il fenomeno non interessa solamente l'ambito triestino e goriziano, estendendosi diffusamente a territori diversi della regione, imponendo di sé i relativi paesaggi che si caratterizzano non solo per la presenza di cavità ipogee, ma anche per le morfologie di superficie, la copertura vegetale, le stesse tipologie edilizie tradizionali storiche, condizionate da questo ambiente un tempo ostile, spesso reso vieppiu difficile dalle condizioni climatiche.

Un nutrito corredo fotografico illustra l'argomento trattato con riprese di siti significativi, interni di grotte, particolari delle forme di erosione più interessanti; alla grafica è affidato il compito di illustrare i profili stratigrafici del sottosuolo.

Ringraziamenti al Dipartimento di Scienze Geologiche, Ambientali e Marine dell'Università di Trieste, nella persona di Franco Cucci e dei suoi collaboratori.
Auguro buona lettura.

Lucio Saccari
Cavità e aree carsiche nel Friuli Venezia Giulia
I siti carsici del Friuli Venezia Giulia

Premessa

Nel Friuli Venezia Giulia sono numerose le aree intensamente carsificate e alcune fra queste, il Carso triestino e il Monte Canin, sono famose nel mondo per lo sviluppo delle morfologie epigee ed ipogee. Nei 7850 km² di territorio regionale vi sono infatti affioramenti di rocce carbonatiche per circa 1900 km² che interessano circa 5000 km² di aree montuose e collinari. Si può ben affermare quindi che quasi il 40% dei rilievi regionali sono interessati da fenomeni carsici più o meno intensi e diffusi. Sono state scoperte e accatastate finora più di 7000 cavità (al 31 gennaio 2009 le grotte note sono 7206, 4118 nel Friuli e 3088 nella Venezia Giulia), con una densità media di più di 3 grotte per km² carsificabile. Densità che in alcune aree è notevole con punte di 70 cavità/km² presso Fornetti, nel Carso triestino, e con valori record di 264 cavità/km² sull’altopiano del Col delle Erbe nel Massiccio del Monte Canin. Altrettanto diffuse sono le forme carsiche epigee quali doline, campi solcati, grive, che spesso raggiungono dimensioni e tipologia veramente notevoli. Abbondante è la documentazione su queste aree, così come numerosissimi sono gli articoli descrittivi delle cavità che si aprono in Regione. Opera meritoria di diffusione delle conoscenze su questo tema, ad esempio, è quella svolta dalla Provincia di Udine, che giovandosi della collaborazione del Circolo Speleologico Idrologico Friulano ha edito negli ultimi dieci anni alcuni volumi sulle caratteristiche fisiche delle principali aree carsiche della provincia, oltre che una ponderosa opera bibliografica dedicata al carsismo ed alla speleo-ragionamento.

Dato che tutto il mondo carsico, ma in particolare ogni singola area interessata da carsismo superficiale ed ipogeo può essere considerata un geosito, si vuole con questo volume porre all’attenzione dei pianificatori e dei fruitori delle bellezze naturali l’unicità fisica e pae-saggistica di questi beni naturali. E, sia che si consideri il geosito seguendo la scuola italiana come parte di territorio sensibile, dotato di elevato valore geologico in senso lato (che quindi merita di essere protetto contro le aggressioni che potrebbero nuocere alla loro funzione, alla loro forma, alla loro evoluzione naturale) o come una qualsiasi località, área o territorio in cui è possibile definire un interesse geologico-geomorfologico per la loro conservazione, sia ancora seguendo la scuola anglosassone, e quindi considerando i geositi come aree o località che rappresentano in modo esemplare eventi geologici e/o geomorfologici, rivestendo la funzione di modelli per un’ampia fascia di territorio, le aree carsiche sono tutte geositi.

Questo volume è frutto della collaborazione di più persone che in varia maniera ci hanno aiutato. In primis Fabrizio Martini che ha redatto il capitolo sulla vegetazione, colmando una lacuna importante nel campo dei rapporti fra suoli calcarei e mondo vegetale ed Elio Polli che ha messo a disposizione il suo patrimonio di immagini. Ed ancora Ezio Anzanello, Alberto Bianzan, Alberto Casagrande, Giovanni Battista Carulli, Cristiano Cavallari, Antonio Cossutta, Adalberto D’Andreà, Marco Di Lenardo, Guglielmo Esposito, Fabio Forti, Paolo Manca, Andrea Macchi, Giuseppe Muscio, Ivo Pecile, Fabio Piccin, Elio Polli, Furio Premiani, Rodolfo Riccobonii, Dario Sartorio, Giuliano Sauli, Federico Savoia, Claudio Sgaj, Pino Sfregola, Margherita Solari, Umberto Tognolli per le belle e significative immagini. Ancora dobbiamo a Lucio Saccari e a Paolo Bonetti la costante attenzione alla buona riuscita della comune fatica e a Pino Guidi una fattiva lettura critica dei testi.
Cenni di carsogenesi

Carsologia è il nome della disciplina scientifica che affronta lo studio degli ambienti carsici; fenomeno carsico è l'espressione morfologica delle molteplici risultanze dell'attacco e della dissoluzione delle rocce carbonatiche per via chimica, con meccanismi che vanno sotto il nome di corrosione carsica.

Il termine carso prende origine dal nome della regione geografica del Carso di Trieste, territorio che per primo fu analizzato dagli studiosi di carsologia in quanto particolarmente significativo e preso come riferimento assoluto e perciò chiamato anche "Carso Classico". A sua volta il toponimo prende origine dalla radice paleoindoeuropea *kar*, che significa "roccia" o "pietra".

Sulla superficie terrestre affiorano con abbondanza rocce carbonatiche (i calcari e le dolomie costituiscono circa un quarto delle terre emerse), tutte più o meno carsificabili.

Dal punto di vista chimico, la corrosione è un fenomeno che avviene in un sistema a tre fasi (gas + liquido + solido) e consiste nella messa in soluzione di roccia da parte dell'acqua (di pioggia, di ruscellements superficiali, di percolazione attraverso il suolo e le fratture della roccia, del mare) facilitata dal fatto che le acque vengono acidificate dalla anidride carbonica proveniente dall'aria e dal suolo.

La solubilità delle rocce carbonatiche è minima, oltre che molto lenta: l'abbassamento medio di una superficie carsica come quella del Carso triestino nelle condizioni meteorologiche attuali è di 0,025 mm/anno e quindi si vogliono circa 10.000 anni per apprezzare sensibilmente le modificazioni indotte dal carsismo sulle superfici rocciose.

E ci vogliono almeno 50.000 anni per consentire un rapido deflusso delle acque all'interno della massa rocciosa.
Le morfologie carsiche epigee

Anche se sono espressione dello stesso fenomeno e sono strettamente collegate e dipendenti, si suole distinguere le forme carsiche epigee, o superficiali, da quelle carsiche ipogee, o profonde.

Il paesaggio carsico è contraddistinto dalla presenza di roccia affiorante, o subaffiorante, elaborata da morfotipi spesso caratteristici e per la scarsità o l’assenza di reticoli fluviali. Infatti normalmente le acque scorrenti in superficie vengono catturate in punti idrovanli o in inghiottiti e convogliate all’interno della massa rocciosa carsificata.

La macroforma tipica di questo paesaggio è la dolina.

Le doline (termine internazionale derivato dalla lingua slovena) sono depressioni chiuse, a corona subcircolare o subellittica, solitamente più large che profonde. Le dimensioni sono estremamente variabili (da pochi metri ad alcune centinaia di metri di larghezza, per profondità da pochi metri ad alcune decine di metri). Il fondo può essere coperato da depositi fini (residuo di quanto non disciolto o di quanto “intrappolato” nella dolina) o da materiale grossolano (frammenti di roccia mobilizzati e franati dai fianchi). I fianchi hanno accialità e morfologia collegate alle caratteristiche litologiche strutturali del substrato roccioso. Dimensioni, fondo e fianchi, definiscono forme la cui genesi è legata ad assimolamento localizzato (praticamente puntiforme o da punti vicini e concentrati) di acque, con un successivo allargamento radiale per corrosioneaccelerata.

Particolari macromorfotipi sono le doline di crollo, depressioni che si generano per fenomeni di collassamento dei soffitti di cavità prossime alla superficie. Hanno forma solitamente circolare a pozzo, pareti subverticali e sul fondo si rinvengono depositi grossolani di crollo; possono naturalmente evolvere verso forme più ampie e dai fianchi meno acclivi.

Molti tipi di paesaggio e numerose altre forme carsiche sono il risultato dell’azione combinata, nel tempo e nello spazio, del processo carsico e di altri processi. La combinazione favorisce lo sviluppo di forme miste, spesso influenzate anche dai processi eolici, marini, fluviali, glaciali, periglaciali (e quindi dalle caratteristiche climatiche), oltre che dalle particolari condizioni litologiche e geologico-strutturali.

Fra queste forme “miste” merita ricordare alcune particolarmente interessanti: i polje, le valli cieche, le città di roccia, le forre carsiche, le conche glaciocarsiche.

I polje sono grandi depressioni chiuse di origine mista carsica e litologico-strutturale, con dimensioni talvolta fino a decine di chilometri. Sono macroforme allungate, da mettere in relazione a strutture tettoniche (faglie o assi di pieghe): i fianchi sono ripidi, acclivi o comunque non raccordati al fondovalle; il fondovalle è piatto, roccioso, spesso coperto da deboli depositi argilloso-alluvionali. Il fondo, o le fasce di raccordo con i fianchi, sono spesso caratterizzati da piccole depressioni allagate, da sorgenti e/o da inghiottiti, che a loro volta possono funzionare anche da sorgenti e sono detti inversac.

Le valli cieche sono forme miste fluviocarsiche, sono cioè valli fluviali lungo il cui corso si sono aperti uno o più inghiottiti: a monte di questi l’incisione continua ad approfondirsi, a valle non c’è più acqua scorrente e quindi si genera una valle secca. L’area intorno all’inghiottitoio si evolve come una dolina, il resto del bacino di alimentazione come una valle fluviale.

Fra le forme carsiche miste possono anche essere inserite le forre carsiche, profonde incisioni alle quali mancano corsi d’acqua laterali che addolciscono i rilievi, e le cosiddette città di roccia, ampi area o tavolati da cui si ergono, per alcuni metri, blocchi carbonatici ben definiti ed isolati, detti hum quando sono di grandi dimensioni. Per estensione si

3 Una dolina “a ciotola” con il fondo riempito da terra rossa ed adattato alla coltivazione (Carso Classico)
L'ingresso della Grotta Neè è a tutti gli effetti una dolina di cirollo (Carso Classico)
può parlare di città di roccia anche nel caso di estese aree in cui l’incarsimento e l’erosione hanno lasciato isolati, funghi, blocchi carbonatici, piccoli rilievi, colline.

Le conche glaciocarsiche sono conche montane chiuse, evolute sia per dissoluzione come le doline, sia per lazione di esarazione di un ghiacciaio o di un nevaio.

Numerose sono le piccole forme (Karren, in senso lato ed in lingua tedesca), originate sulle superfici carsificabili direttamente esposte agli agenti atmosferici o coperte da suoli. Esse sono legate o alla dissoluzione attiva delle acque scorrenti sui fianchi rocciosi più o meno acclivi (solubilità dinamica) o alla dissoluzione statica delle acque stagnanti nelle depressioni (solubilità statica).

Si riconoscono:

- le scannellature (in tedesco Rillenkarren, in inglese solution flutes), forme minute rappresentate da solchi rettilinei (profondità circa 1 cm, largh. 1-4 cm, lunghi 5-50 cm) e sezione arrotondata. In genere sono riunite in complessi (a pettine, a penna, a fascio, a isola), sono separate da una “crestone” aguzza che funge da spartiacque e sono tipiche di superfici mediamente o poco inclinate.

La genesi va ricondotta alla corrosione da parte delle acque piovane su roccia calcarea per solubilità dinamica lungo linee di massima pendenza. A valle delle scannellature si trovano spesso superfici lisce che corrispondono alle zone dove l’acqua
forma, per unione dei diversi filetti idrici, un velo continuo che scorre più lentamente in modo omogeneo senza variazioni laterali di velocità, quasi con moto laminare.

- I solchi carsici (in francese lapièes, in tedesco Rinnenkarren o Wendkarren a seconda della morfologia, in inglese solution grooves), sono solchi larghi più di 5 cm, profondi più di 3 cm, lunghi almeno 100 cm, che seguono la massima pendenza della superficie calcarea. Hanno morfologia varia: la sezione è sempre ad U, ma i fianchi possono essere più o meno acclivi e gli spartiacque più o meno aguzzi. Lo sviluppo è tanto rettilineo che tortuoso o ad anse meandriformi, il fondo è liscio, talora incavato al centro da un solco secondario. Il profilo longitudinale è talvolta caratterizzato da un andamento a gradini per la presenza di piccole conche (quasi delle “mini marmite” fluviali).

Si tratta di “grondaia”, la cui genesi è legata allo scorrevole con andamento lineare delle acque di ruscelamento, per cui la morfologia dipende dall’inclinazione della superficie, dal regime idrologico, dalla presenza di organismi vegetali e/o di suolo, dal tipo di clima: sono il classico effetto di quella che viene definita corrosione acce
erata. Talora si sviluppano sotto copertura di suolo (si parla allora di carsismo sottocutaneo): sono più distanziati e hanno forma più arrotondata.

- Le vaschette di corrosione (internazionalmente definite con il termine sloveno kamenitza, in tedesco Napfkarren, in inglese solution pan o corrosion cup), piccole conche chiuse (profondità da 2 a 50 cm, larghezza da 5 a 200 cm), tondeggianti, di diametro variabile, poco profonde rispetto le dimensioni areali. Il fondo è quasi sem-pre orizzontale, la sezione è a piatto o a scodella allargata verso il basso. Spesso hanno un canale emissario di scarico, e talvolta anche, specie se evolute per lungo fratture, un limitato bacino di impluvio.

La genesi è legata allo stagnare dell’acqua in una microdepressione, talvolta originata o favorita da fitocarsismo. Se nella depressione permaiano depositi e/o sostanze organiche, anche durante le fasi di svuotamento si possono generare delle tasche di approfondimento per carsismo sottocutaneo. Le vaschette si allargano più velocemente di quanto si approfondiscano in quanto la corrosione è più attiva ai bordi che sul fondo: spesso così si creano, alla base delle pareti, delle nicchie aggettanti, quasi dei “solchi di corrosione” simili ai solchi di battente marini.

- Gli alveoli di corrosione, piccole (da 2 a 3 mm a 2-3 cm) concavità dai bordi acuti, generate per dissoluzione puntiforme (spesso favorita da attività biologica fitocarsica).

- I fori di dissoluzione, micropozzi, piccole cavità tubolari a sezione circolare o ellittica, di diametro da millimetrico a decimetrico, quasi trapananti la roccia e formatisi in corrispondenza di fratture. La genesi è da ricondurre a fenomeni di dissoluzione lungo canalioli impostati in fratture; l’allargamento progredisce inizialmente dal basso verso l’alto per fenomeni di capillarità e poi per circolazione d’acqua e d’aria umida.
i crepacci carsici (in tedesco Klufkamm, in inglese grikes, in francese lapiés de diaclase), fratture profonde, incarsite, raramente legate ad anastomosi di fori, più spesso delle vere vie di deflusso preferenziale delle acque guidate dalla fratturazione. I fianchi sono sempre molto inclinati, il fondo è piatto o a V aperta verso l’alto. Dal punto di vista genetico sono simili ai solchi carsici; tuttavia, mentre nei solchi è la massima pendenza a guidare il defluire delle acque, nei crepacci sono i piani di discontinuità (normalmente quelli di frattura) a condizionare la direzione del movimento.

le grize, pietraie date da blocchetti di roccia staccati dal substrato roccioso per carsismo lungo le superfici di discontinuità (stratificazione e fratturazione) e isolati in posto, senza aver subito trasporto.

i campi carreggiati o campi solcati (Karrenfeld in tedesco, lapiés in francese), aree in cui sugli affioramenti rocciosi sono presenti in associazione più morfotipi quali solchi, scannellature, crepacci, vaschette, fori, ecc.

Le morfologie carsiche ipogee

L’analisi delle morfologie carsiche profonde non può prescindere dalla conoscenza delle fasi evolutive del massiccio o dell’area carsica in cui esse sono presenti. Questo in quan-

...
L'evoluzione del reticolo ipogeico segue regole non uniche e modalità complesse, secondo processi non ancora noti nei dettagli anche perché troppo sono i fattori che intervengono nella caratterizzazione dell'evoluzione. Ad un inizio quasi casuale della geometria delle linee di penetrazione delle acque nel sottosuolo, segue la formazione delle prime protocavità che si sviluppano con modalità a casualità guidata dalla geologia. In tempi che hanno in 10.000 anni l'unità di misura, segue l'allargamento preferenziale dei tratti di condotta idrica con sbocco all'esterno (quelli cioè in grado di richiamare per deflusso più acqua) e poi lo sviluppo vero e proprio, figlio di molteplici fattori fra cui prevalgono quelli geologici e quelli climatici.

In spazi temporali diversi, ma sempre in tempi che hanno come ordine di grandezza ed unità di misura le decine di migliaia di anni dal momento in cui le acque aggrediscono la superficie esposta, in seno alle masse rocceose carsificabili si genera, per dissoluzione, un più o meno complesso reticolo di vuoti comunicanti.

Il reticolo ipogeico viene ad interessare due porzioni di massiccio, una sottostante all'altra: quella inferiore con i vuoti carsici completamente riempiti d'acqua (la failda di base) e quindi situata al di sotto della co-sidetta superficie freatica, quella superiore con i vuoti interessati da percolazione e riempimento d'acqua solamente durante la fase di trasferimento delle acque dalla superficie alla failda di base. Si ha così una suddivisione del massiccio carsificato in una zona vadosa, o zona di percolazione, e in una zona freatica, o zona satura, (prendendo a prestito termini usati dagli idrogeologi per gli acquiferi porosi); fra le due zone vi è una fascia intermedia, detta zona di oscillazione, il cui spessore dipende dal regime idraulico locale e dal variare della superficie piezometrica in funzione della quantità d'acqua che, percolando, preme con il carico idraulico per raggiungere le sorgenti.

È così possibile inquadrare, dal punto di vista genetico-evolutivo e descrittivo, le morfologie profonde a parità di agente genetico prevalente.

Ben si comprende come le caratteristiche litologiche (rocce più o meno o per nulla carsificabili), quelle tectoniche (pieghe, faglie, ecc.) e le discontinuità (tipologia, frequenza e assetto spaziale dei piani di separazione della massa rocciosa) condizionino in maniera determinante lo sviluppo, la forma, il numero e le dimensioni dei fenomeni carsici in profondità.

Èva dimenticata, nell'analisi delle morfologie, l'influenza sullo sviluppo del carsismo delle vicissitudini geologiche (orogenesi, eustatismo, subsidenza, modellamento superficiale) ed in particolare di quelle climatiche (temperatura, piovosità, livello dei mari) che, dati i lunghi tempi necessari alla compiuta evoluzione, sono forse le vere modellatrici dei morfotipi carsici.
Nel tempo infatti, e nelle varie condizioni geologico-strutturali successivamente durante la carsogenesi, vanno inquadrati, analizzati e compresi quelli che sono i risultati dell’azione singola o combinata dei tre principali agenti morfogenetici ipoge:

a) l’azione delle acque scorrenti o stagnanti, in quanto capaci di corrodere la roccia creando i buoi e/o di ridepositare roccia sotto forma di concrescione riempendo più o meno completamente i vuoti appena creati;

b) l’azione delle acque in quanto capaci, per l’energia derivante dalla loro velocità, di erosione meccanica e quindi di creare vuoti di varie dimensioni all’interno della massa rocciosa o dei sedimenti, di trasporto e di deposito di materiale e quindi di modificare, in positivo ed in negativo, dei vuoti;

c) l’azione della gravità, cioè del processo di modifica delle morfologie originarie tramite crolli dai soffitti e dalle pareti di porzioni di roccia o di concrescione, con l’imposizione di nuove condizioni di stabilità e quindi di nuove forme dei vuoti.

In sintesi, ogni cavità è composta da vari, le cui caratteristiche spaziali sono integrate nella realtà geologica ed evolutiva, che hanno una loro morfologia tipica e che sono interessati a loro volta da morfotipi particolari.

Nell’analisi delle morfologie giova, quindi, distinguere quelle originatesi nella zona freatica (anche zona dell’acqua di fondo o zona umida) dette morfologie dirette o sin-genetiche, da quelle originatesi nella zona di percolazione (anche zona secca o zona epipersica e di assorbimento) dette morfologie indirette o paragenetiche. Le due zone sono separate dalla zona di oscillazione (anche zona intermedia di oscillazione della falda o zona epifreatica) in cui occasionalmente il livello di base carico si innalza ed in cui le morfologie che si creano sono miste, dirette o indirette. Nella categoria delle morfologie dirette vanno inserite le forme la cui genesi è dovuta all’azione corrosiva delle acque esercitata in tutte le direzioni per allagamento totale: si tratta dei vani che si formano nella zona freatica.

Morfotipo classico è la condotta freatica o condotta forzata, quasi un tubo di comuni-
La sedimentazione forma depositi più o meno grossolani abbandonati dalle acque per diminuita capacità di trasporto (cioè per variazione di velocità): ghiaie, sabbie, limi, argille. Talvolta nelle cavità si incuneano, spinti o portati dai ghiacci, anche depositi morfici. I crolli sono la conseguenza dell'azione morfogenetica della gravità che elabora, con fatti microclastici o con episodi macrogravitativi, i vuoti che non sono più in equilibrio geostatico, alla ricerca di forme più stabili. Oltre alla caduta di piccoli volumi rocciosi si verificano grandi crolli dal soffitto o dalle pareti nelle sale e nelle gallerie; frequenti sono anche i sedimenti di pavimenti per anastomosi di gallerie, i ribaltamenti per scavalco al piede, le fratture di tensione. Si possono formare così accumuli anche imponenti di materiale (talvolta successivamente cementato dalle acque circolanti ricche di carbonati discoliti) più o meno grossolano: merita tenere presente nelle analisi evolutive che i detriti occupano maggior volume del materiale sano in posto.

Il concrezionamento (la deposizione chimica) consiste nella ricristallizzazione di un determinato sale (solitamente carbonato di calcio, ma in occasioni speciali anche altri carbonati) per sovrasturazione. La forma e la struttura delle concrezioni (dette speleotemi) dipendono dal "tipo di moto" dell'acqua: provenienza puntuale o diffusa, gocciolo o scorrimento, evaporazione o traspirazione, portata costante o variabile, scorrimento su pareti o su pavimento, scorrimento laminaire o turbolento, correnti d'aria, variazioni di umidità assoluta, pressioni interstiziali, capillarità, arricchimenti minerali o termali, ecc. Possiamo quindi leggere le forme, oltre che con estro artistico, in funzione del modello genetico e come testimonianza di passati regimi idrici e/o climatici.

Fra i meccanismi principali di cristallizzazione possiamo ricordare:

a) da gocciolamento (tubolari, stalattiti, veli o corte, stalagmiti);
b) da scorrimento (colonne, colate, crostoni stalagmitici, gours);
c) da capillarità (dischi, eccentriche, introversenze);
d) da condensazione (rim, bafi);
e) in condizioni subacquee (cristalli, mamiloni, pisoliti);
f) da acque salienti (gayermiliti).

lateralì più o meno inclinati ed intersecanzì una struttura verticale.

Sono definite morfologie indirette tutte quelle forme che sono il risultato della modifica della forma dei vani a morfologia diretta per fatti gravitativi, deposizionali fisici e chimici, tetttonici. Molto spesso le morfologie indirette sono il risultato della concomitante (o distribuita nel tempo) azione dei diversi fattori morfogenetici. Lo scorrimento di acque libere porta all'approfondimento per corrosione ed erosione del pavimento delle gallerie, con la formazione di forre, di solchi di incisione, di mammite, cioè di forme molto simili a quelle che i corsi d'acqua ad alta energia generano in superficie. Frequentemente è lo scavalco al piede di depositi (mensole, crolli e mobilizzazioni di depositi chimici o fisici, ecc.) per erosione, movimentazione e trasporto in altre zone della cavità.

22 Pozzo a cascata
(Foto A. Anzanello)

23 Ampia galleria paragenetica profondamente modificata da depositi di riempimento e di concrezionamento alla Grotta C. Skilan (Carso Classico)
(Foto Archivio C O E B)
Le stalattiti e le stalagmiti rappresentano le forme più comuni di concrezionamento di grotta. Si generano per effetto della deposizione di cristalli di calcite (CaCO₃) per evaporazione dell'acqua durante lo stillicidio.

Le stalattiti si formano sulla volta delle cavità: la goccia, perdendo per diffusione anidride carbonica nell'atmosfera, deposita sul bordo cristalli di calcite i cui assi di accrescimento sono perpendicolari alla superficie da cui gocciolano e su cui scorrono le acque. L'acqua percola attraverso un canalicolo centrale, il che contribuisce alla crescita verticale, e lungo la superficie esterna, il che fa accrescere radialmente lo speleotema con sottili veli concentrici.

Le tubolari, chiamate anche spaghetti, sono stalattiti particolari il cui diametro rimane costante e coincidente con quello della goccia d'acqua che le genera (0,4-0,6 cm). Il gocciolio è sufficientemente lento da permettere la deposizione di materiale a corona circolare, ma è abbastanza veloce da non consentire cristallizzazioni all'interno del tubolare.

Nel punto di caduta di una goccia si forma la stalagnite, la cui forma cilindrica con l'apice ogivale è dovuta al fatto che la deposizione è massima nel punto di impatto, mentre tende a diminuire radialmente di mano in mano che ci si allontana dal punto di caduta. La dimensione e la forma, estremamente variabili, della stalagnito dipendono oltre che dalla velocità di caduta (e quindi dall'altezza di gocciolio), dalla quantità d'acqua e dal suo regime (e quindi dal tipo di clima esterno).
Caratteri geologici e geomorfologici
del Friuli Venezia Giulia

Il territorio montano e collinare del Friuli Venezia Giulia è suddivisibile in unità orografiche che hanno, in concordanza con le caratteristiche geologiche, una loro individualità geografica. Si riconosce a settentrione la Catena Carnica, estesa in senso Est-Ovest e sviluppata dalla Linea della Gail in Austria all'allineamento quasi rettilineo delle valli Pesarina, Calda, Pontebba, Pontebbana, alto Fella. Queste valli, impostate su linee tettoniche, sono un'espressione morfologica che collega il Tarvisiano con il Cadore e sono costituite quasi esclusivamente da rocce di età paleozoica.

Più a Sud si hanno le Alpi Tolmezzine (anche Alpi Carniche Meridionali) con i rilievi costituiti da rocce prevalentemente mesozoiche e con i fondovalle in cui affiorano i sottostanti termini paleozoici, e le Alpi Giulie, con i rilievi dominati dalle rocce triassiche.

Le Prealpi Carniche sono sviluppate a Sud del percorso montano del Tagliamento fino ai rilievi affacciati sulla Pianura Friulana occidentale. Sono qui dominanti le rocce mesozoiche e cenozoiche, con un assetto strutturale che forma un arco concavo verso la pianura. Verso Est, ad arco verso la Pianura Friulana orientale, si trovano le Prealpi Giulie, prosecuzione delle Prealpi Carniche in cui sono particolarmente sviluppate le successioni in facies di Flysch e di molassa di età mesozoica.

Parte a sé fa il Carso, costituito quasi esclusivamente da calcari cretacei e paleocene.

Dal punto di vista strutturale, va tenuto presente che nella nostra Regione si saldano tre catene geologiche: la Catena Paleocarnica, la Catena Subalpina, la Catena delle Dinaridi che sono costituite da una successione litostratigrafica potente complessivamente quasi 30.000 metri e rappresentativa di 450 milioni di anni di storia geologica.

La sequenza permocarbonifera

I termini della Catena Carnica affiorano nella zona più settentrionale della Regione lungo una fascia di larghezza variabile da 10 a 20 km, delimitata verso Nord dal confine italo-austriaco e sepoltà verso Sud sotto una pila di accavallamenti formati dalle successioni mesozoiche. Lo schema stratigrafico consta di due sequenze fondamentali, quella ercinica e quella permocarbonifera.

Nella sequenza ercinica, sulle siltiti e sulle marne della Formazione della Val Viscindo e delle Formazioni dell’Ugge, giacciono i calcari stratificati ad Orthoceras della Formazione di Monte Ladin (Siluriano) e i calcari massivi di scogliera a coralli, stromatopore e cimene del Devoniano. I calcari, potenti da 200 a 300 metri, sono spesso intensamente carsicati.

Nella sequenza permcarbonifera, denominata anche Permocarbonifero Pontebbano o Supergruppo di Pontebba, si riconsostano numerose formazioni (Formazione di Hochwipfel,
Formazione di Dimon, Gruppo dell’Auernig, Gruppo di Rattendorf, Formazione del Trokofel, Arenarie di Val Gardena, Formazione a Bellerophon) che consistono essenzialmente in alternanze di depositi continentali, deltizi e di mare poco profondo in facies terrigene o carbonatiche complessivamente potenti fino a 3000 metri, nelle quali il carsismo praticamente non si è sviluppato. Ad essere precisi, tuttavia, nei gessi saccoiidi del Bellerophon possono svilupparsi fenomeni di paracarsismo con formazione di doline e di cavità.

La sequenza triassica inferiore e media

I termini che costituiscono la sequenza tipica delle Alpi Carniche sono pertinenti non solo a quest’area, ma anche a quella delle Alpi Giulie Settentrionali.

Le formazioni appartengono al Triassico ed in particolare si riconosce una successione di calcari, dolomie, siltiti, arenarie, nelle quali fenomeni importanti di carsismo non sono noti.

Ricordiamo la Formazione di Werfen (con le sue subunità: Orizzonte di Tesero, Membro di Mazzin, Orizzonte di Andraz, Membro di Siusi, Oolite a Gasteropodi, Membro di Campi, Membro di Concenighe), la Formazione di Lusnizza, la Dolomia del Serla inferiore e superiore, le Formazioni del Monte Dent e del Monte Bivera, la Formazione dell’Ambata, la Formazione del Monte Tiarfin, la Formazione di Buchenstein, gli Strati di Wengen, la Dolomia Cassiana o Formazione dello Schlern, il Gruppo di Raibl.
Le sequenze triassico - terziarie

Le sequenze delle Prealpi Carniche e delle Prealpi Giulie interessano la fascia di territorio compresa tra il corso dell’Alto Tagliamento, la Val Resia e la pianura. Possono essere distinte due successioni rappresentative, una di sedimentazione bacinale e l’altra di piattaforma e peri-piattaforma. Dal Triassico superiore, infatti, anche l’area attualmente occupata dalla nostra Regione risente dell’apertura del Mare della Tetide e della conseguente strutturazione di ambienti marini diversi. Sarà solo nell’Eocene che i prodotti di smantellamento della catena alpina in via di sollevamento creeranno depositi, di tipo torbiditico, che uniformano la sedimentazione regionale. La sequenza di piattaforma prevede una successione in cui numerosi sono gli intervalli calcarei, anche poetici, oggi intensamente carsificati. Ricordiamo al proposito che sulla Formazione del Monticello (calcari scuri marnosi e selci feri) giace la Dolomia Principale del Norico, data da dolomie massive e calcari dolomitici stratificati con potenza massima di 2000 metri e media di circa 500 metri, che occasionalmente ospita cavità. Ma è nei calcari grigi a Megalodon, ben stratificati con spessore anche di 800 metri della formazione del Calcare del Dažh-stein (Retico) e nei sovrastanti calcari grigi ben stratificati, talvolta oolitici, con potenza di circa 200 metri della formazione dei Calcari grigi dei Friuli (Lias) che si sviluppa un intenso e diffuso carsismo, presente anche nei calcari selci feri ad ooliti e crinoidi (Calcare del Vajont e Calcare del Cellina), e nei calcari fittamente stratificati con potenza di circa 360 metri della Formazione del Calcare di Soccher (Dogger-Malm).

E sono infine del Cretaceo le formazioni più carsificabili e carsificate della Regione, con un carsismo diffuso ed intenso. Ne sono espressione il Calcare di Aurisina, il Calcare a rudiste, calcari biocostritti a Rudiste, massici, tipico deposito di scogliera la cui potenza nel settore del Carso raggiunge il migliaio di metri. Intensamente carsificati sono anche i calcari di età cenozoica: i calcari del Gruppo Liburnico, i Calcaris a Nummuliti ed Alveoline nei quali sul Carso si aprono interessantissime cavità. Così come con un carsismo altrettanto interessante si presentano le intercalazioni calcaree, arenacee e conglomeratiche, che si trovano nelle complesse successioni prevalentemente silicoclastiche dei vari Flysch paleocenici ed eocenici. Questi, in specie i Flysch di Grivè, di Uccoa, di Ciodig, contengono livelli calcarei in cui il carsismo ha creato numerose cavità.
28
La dissoluzione del cemento calcareo mette in evidenza frammenti e gusci interi di rudiste (Radialitidi di età Cretacico superiore)
(Foto R. Riccaforti)

29
Il Monte Palafontana sullo sfondo di campi solcati in calcari a Rudiste di Casera Cjaletet (Cansiglio-Cavallo)
(Foto B. Grillo)

A pag. 30:
30
La Forca del Torrente Rosendra
I paesaggi carsici

Il *paesaggio* è per il Devoto-Oli, sostantivo che esprime una *porzione di territorio considerata dal punto di vista prospettico o descrittivo, per lo più con senso affettivo, cui può più o meno associarsi anche un’esigenza di ordine artistico ed estetico*. Tuttavia sull’essenza e sul significato del termine dibattono più scuole di pensiero: c’è chi lo definisce il risultato dell’evoluzione della natura e dell’azione dell’uomo, chi l’insieme delle forme di un luogo e delle relazioni fra di esse, chi la forma dell’ambiente, chi l’aspetto visibile di un ambiente.

La Convenzione europea del paesaggio (Firenze, 20 ottobre 2000) definisce il paesaggio come “una determinata parte di territorio, così come è percepita dalle popolazioni”, il cui carattere deriva dall’azione di fattori naturali e/o umani e dalle loro interrelazioni.

Il Codice dei beni culturali e del paesaggio (art. 131, comma 1 del DLgs 22 n. 42 del 2004) per paesaggio intende una parte omogenea di territorio i cui caratteri derivano dalla natura, dalla storia umana o delle reciproche interrelazioni.

Il paesaggio fisico è l’aspetto che assume il territorio in superficie in funzione di numerosi fattori, fra i quali giocano un ruolo fondamentale quattro variabili indipendenti: il tempo, il rilievo iniziale, la geologia, il clima. Il paesaggio è anche il risultato dell’interazione fra forme del terreno, tipo di copertura, colori della natura, intervento antropico: a parità di intervento dell’uomo il paesaggio naturale è figlio della roccia su cui agiscono i fattori morfogenetici (essenzialmente vento ed acqua nelle sue diverse forme) e le condizioni climatiche, che favoriscono o contrastano la “vestizione” della superficie da parte della vegetazione. Ma il connubio roccia, vegetazione, vita è, per così dire, normalmente paritetico.

Il carsismo esalta, invece, il condizionamento naturale: si può definire carsico un paesaggio in cui la dissoluzione dei calcarri che costituiscono il substrato porta a modificare in maniera da poco appariscente ad assoluta le morfologie superficiali.

Se il carsismo è incipiente o scarsì sono gli affioramenti calcarei, il paesaggio è quello tipico competente al rilievo, sia esso costiero, continentale, di pianura, collinare, montuoso, fluviale, marino, glaciale, desertico. Quando i calcarri affiorano diffusamente sono invece i risultati della dissoluzione della roccia a prevalere su quelli legati agli altri fattori e processi che costruiscono il paesaggio.
È difficile inquadrare in poche parole la complessità del paesaggio carsico e forse la miglior maniera di descriverlo "visivo" dell’azione degli agenti atmosferici sulle superfici calcaree è quella di immaginare un ondulato pianoro, che sembra a bassa energia di rilievo se osservato a piccola scala ma è ad alta, se non ad altissima, energia di rilievo se analizzato a grande scala. La contraddizione in termini è il risultato dell’azione della dissoluzione della roccia, oltre che della sua disgregazione, erosione, alterazione, che sostanzialmente ondulano ed abbassano le superficie creando depressioni concentriche e tozzi rilievi cupoliformi. Su questa movimentata superficie, in funzione del clima, della litologia e del tempo, si creano depressioni nelle depressioni, rilievi a cupola o a torrione sui versanti delle colline; attacciscese, non sempre con facilità, la vegetazione; si sviluppano ulteriori forme dissolutive che movimentano ancor più le forme superficiali; si riempiono le depressioni di materiali che innescano habitat particolari; scompaiono le acque imponendo caratteristiche desertiche ad aree umide. E nell’ancora più piccolo si rinnovano questi processi movimentando ancor più la superficie con solchi, fori, funghi, grive. Ed è un paesaggio in cui il tempo diviene protagonista: data la lentezza di sviluppo delle forme carsiche solamente dopo centinaia di migliaia di anni il carsismo può dirsi “classico” ed i risultati della dissoluzione sono riusciti a creare forme svi-
luppate e condizioni naturali assolutamente peculiiari. È un paesaggio per il quale le caratteristiche climatiche significano tutto: senza acqua non c'è carsismo, con il carsismo sembra non esserci l'acqua. Temperatura e umidità dell'aria regolano le coperture vegetazionali che a loro volta regolano l'anidride carbonica nell'atmosfera (e quindi poi nelle acque che aggrediscono la roccia) e che creano il suolo che viene poi assorbito in profondità. Ne deriva l'alta vulnerabilità del territorio carsico: le forme sono il risultato di una lentissima evoluzione e dell'interazione di numerosi fattori ed agenti, che a loro volta nel tempo variano spesso in maniera indipendente. È ben difficile così ricreare le condizioni che hanno portato allo sviluppo delle diverse forme.

Distruggere (anche semplicemente coprendolo con riporti o modificando la forma della superficie) un campo solcato, significa non poterlo più ricostruire, non poter più rimettere in moto la corrosione. Modificare il regime di una kameinita significa non poter più riavviare l'evolversi della forma. Modificare il regime e le modalità di infiltrazione delle acque nel sottosuolo significa alterare l'iter della carsificazione ipogeica, trasformando in fossili alcune forme e dando il via all'attivazione di altre, sempre imponendo mutazioni irreversibili che non consentono la riproduzione delle condizioni originali. Ci vogliono condizioni climatiche e geologiche particolari perché le aree carsiche divengano favorevoli all'uomo: solitamente le aree carsiche sono ostili. Non per nulla la radice di carsismo è kar, pietra. E l'uomo sul paesaggio carsico è intervenuto in varia maniera, modificandolo spesso intensamente.

Lo spietamento ha dato luogo a lande limitate da muretti, mazzerie, grizze; la pastorizia ha modificato l'assetto vegetazionale che ha modificato il carsismo sottocutaneo, il disboscamento ha portato all'affioramento di estesi campi solcati. Ed oggi che anche i territori un tempo definiti "ostili" necessitano all'uomo, le modifiche si intensificano ed il carsismo diviene "coperto": da cemento e asfalto, da prati inglesi e giardini esotici, da piste da sci ed impianti turistico sportivi, da vigne e frutti, da strade, abitazioni e capannoni, da discariche e riporti...
La colonizzazione vegetale nelle aree carsificate

Premessa

L'estensione e la diffusione dei geositi carsificati nel Friuli-Venezia Giulia non consentono di fornire una descrizione puntuale del paesaggio vegetale ad essi correlato; è però possibile descrivere i tratti essenziali nelle fasce di vegetazione in cui il fenomeno geomorfologico si presenta con particolare frequenza e intensità, nell'intento di cogliere insieme ai differenti aspetti attraverso i quali essa si manifesta, anche i caratteri fondamentali della flora e della vegetazione che la accompagnano a differenti altitudini e che corrispondono a tipologie profondamente diverse fra loro e conseguentemente apprezzabili con relativa facilità.

Le specie della flora vascolare che colonizzano attivamente le morfologie carsiche sono prevalentemente *casmodite* (che prediligono le rupi) e *glareofite* (che prediligono i macereti mobili e immobili) che in quei siti trovano il proprio *habitat* primario. Le piante però possono esercitare anche un'azione indiretta sull'evoluzione delle forme carsiche di superficie in rapporto al tipo di vegetazione circostante, alla collocazione dell'area, al topoclima o al mesoclima dominanti (in questo senso il fattore altitudine risulta determinante).

Ad esempio un'area carsificata circondata da vegetazione boschiva, in assenza di altri fattori, è destinata a una più rapida colonizzazione vegetale a causa dello strato di fogliame che anno dopo anno si accumula stabilmente sulle superfici rocciose obliterandole. Carsificazioni attive favoriscono specie pioniere, frugali e specializzate, carsificazioni mature implicano la presenza di specie ecologicamente più esigenti. Per questi motivi i tipi floristici e vegetazionali che interessano territori carsici in senso lato risultano profondamente diversi.

Nella breve rassegna che segue vengono descritte sinteticamente le principali cenosi vegetali (ossia le comunità di piante vascolari) in rapporto a differenti morfotipi carsici, con particolare riferimento alle specie fisionomizzanti tanto le tipologie più primitive, quanto quelle più mature e complesse.

Come sè detto, fattori climatici, edafici e geomorfologici concorrono a determinare una diversa composizione floristica delle cenosi: nella fascia collinare la flora è caratterizzata principalmente da specie termofile, che prediligono cioè temperature più elevate e che appartenono a gruppi corologici come il mediterraneo, l'ilirico, il pontico; nella fascia superiore (montana) la componente della flora legata a climi più caldi perde progressivamente d'importanza in favore di quella mesofila, espressa dai contingentì europeo, euro-siberico, mediterraneo-montano, mentre nelle fasce subalpina e alpina dominano specie microtermiche che in gran parte afferiscono ai gruppi corologici alpino, artico-alpino e circumboreale. Sia detto per inciso, il gruppo corologico (o corotipo, o geoelemento) è costituito da un insieme di specie che presentano distribuzioni geografiche congruenti.

La corrispondenza fra i nomi scientifici e volgari, non sempre utilizzati in questa sede per ragioni di spazio, si può reperire fra l’altro nella Flora d’Italia di Sandro Pignatti. La collo-
cazione di alcune cenosi in una data fascia altitudinale non va intesa in senso assoluto, ma deriva dalla valutazione dell'altitudine media ricavata da tabelle fitosociologiche.

La fascia collinare

Nella nostra regione, il carismo a quote comprese fra 100 e 600 metri s.l.m. si sviluppa fondamentalmente sul Carso triestino e goriziano, tuttavia l'intenso dinamismo di incespugliamento e riformazione che da molti anni interessa l'altopiano tende sempre più a mascherare i fenomeni superficiali, tanto che durante la stagione vegetativa buona parte risulta ormai celata dalla coltre vegetale. Fanno eccezione alcuni campi solcati situati sul gradone carsico a mare o sulla sommità di alture, che per la loro struttura e l'originaria estensione non sono stati ancora completamente inghiottiti dalla vegetazione, ovvero plaghe carsiche tuttora occupate dalla landa (pascolo arido), specialmente sul Carso monfalconese. A proposito di queste ultime, è stato però calcolato che al ritmo attuale e in assenza d'interventi conservativi, entro il primo quindiciennio del secolo in corso saranno completamente invase dalla boscaglia illirica a carpino nero (Ostrya carpinifolia) e roverella (Quercus pubescens), la cenosi boschiva (Ostryo-Quercetum pubescens) attualmente dominante sull'altopiano triestino.

Gli affioramenti dei campi solcati e gli scoscesamenti rupestri, anche all'interno di doline, sono le stazioni primarie di una cenosi composta da pochi elementi molto specializzati, fra cui spiccano due comunissime piccole felci: l'asplenio tricoman (Asplenium trichomanes) e la ruta di muro (Asplenium ruta-muraria) — dalle quali la cenosi stessa prende il nome (Asplenietum trichomanos-rutae-Murariae) — cui si accompagnano più spesso Moehringia muscosa, Geranium purpureum, Cymbalaria muralis, Parietaria judai-
ca e poche altre specie. Questa cenosi ha nelle forme più vistose del carisma i suoi habitat elettivi e contribuisce direttamente alla loro colonizzazione, però è in grado di instaurarsi, con scarse variazioni, anche su manufatti come muri, murature a secco, ruder, per cui non è raro osservarla anche all'interno degli abitati. La demolizione che mioclastica dei campi solcati determina la formazione di brecci e a pezzatura grossolana che vengono lentamente colonizzati da tipi differenti di vegetazione a seconda della loro posizione. Sul ciglio carso, dove regna un topoclina a forte impronta mediterranea, questi ambienti sono colonizzati da una formazione a bassi arbusti, la gariga a salvia (Salvia officinalis) ed euphorbia fragolina (Euphorbe fragifera), lo Stipo-Salvietum officinalis, caratterizzato dalla partecipazione di un numeroso contingente di elementi d'impronta mediterranea, per lo più ad habitus suffruticoso. Laddove la dimensione dei clasti è più ridotta si instaurano cenosi di colonizzazione a basse erbe, contrassegnate dalla presenza di specie succulente (genere Sedum) e da uno stuoio di terofite (piante annuali) a fioritura precoce.

Anche le "giuie" sono rappresentabili come Pietraia derivate sia dalla degradazione in posto di campi solcati, sia dall'azione di spietamento operata dall'uomo. Alla loro colonizzazione partecipano anche frugali arbusti della boscaglia ilirica, pionieri ed eliofili, come Fraxinus ornus, Ostrya carpinifolia, Acer monspessulanum, accompagnati da elementi di siepi termofile fra i quali ricordiamo, per la loro ampia diffusione, Frangula rupestris, Prunus mahaleb, Rubus ulmifolius, Viburnum lantana.

Un tipo di steppa rupestre, caratterizzato dal mosaico fra i calcari e la frammentaria vegetazione, è dato dal seslerieto a ginestra sericea (Genistico sericeo-Seslerietae jucnifoliae). Dislocata sugli orli rupestri sottoposti all'impatto della bora e quindi osservabile soprattutto sui ciglii della Val Rosandra, questa cenosi è definita dalla netta prevalenza della graminacea Sesleria juncifolia, dalla precoccissima fioritura, accompagnata da Carex humilis, Genista sericea, Scorzonera austrialica, Seseli gounaeni, Inulaensifolia, Ruta divaricata, Centaurea rupestris, Anthericum ramosum, Dianthus sylvestris/tergestinus, Genista sylvestris, che conferiscono una nota di vivacità a questo pascolo magro.

L'intenso disboscamiento operato nei secoli passati ha condotto al formarsi di una prateria arida sovrapascolata nota come landa carica che oggi viene a trovarsi in netto regresso sia a causa del rimboschimento artificiale a pino nero (Pinus nigra) iniziato a metà del secolo XIX ad opera dei forestali austriaci, sia per il rimboschimento naturale prodotto dall'abbandono delle attività zootecniche. Si tratta di una cenosi insediata su terreni poveri, a cotica superficiale, spesso frammentata dall'affioramento di roccia in posto, che assume fisionomie diverse sul Carso isontino – dove prevalgono gli aspetti floristici più termofili espressi nel crisopogoneto a fiordaliso triestino (Chrysopogono-Centau-
rectum cristatae) – rispetto a quello triestino, dove invece la maggiore altitudine consente l’ingresso di specie più mesofile d’impronta mediterraneo-montana e soprattutto dove più intenso risulta l’influsso della componente illirica, che determina i caratteri floristici distintivi del cariceto a fiordaliso rupestre (Carici humilis-Centaureetum rupestris) nella sua forma collinare-submontana. Entrambi queste cenosi sono connesse ad aspetti più maturi del suolo carsico. Data la complessità dell’argomento, per ulteriori notizie fioro-vegetazionali si rimanda alla trattazione di L. Poldini (1982) dalla quale sono tralasciati anche particolari relativi ad altre cenosi carsiche. Espressioni particolari del carsismo sono spesso presenti anche negli ambienti più tipici dei territori carsici, cioè nelle doline, ove la vegetazione si caratterizza per una vistosa asimmetria di versante. Mentre sul versante esposto a mezzogiorno predomina la bosca-glia illirica, sul lato esposto a Nord, più fresco, il bosco è dato da elementi mesofili quali il carpio bianco (Carpinus betulus) la rovere (Quercus petraea), il cerro (Q. cerris), il noc-ciolo (Corylus avellana), il tigliolo selvatico (Tilia cordata), accompagnati al suolo da una flora nemorale in cui prevalgono le geofite, cioè piante dotate di organi di riserva ipogei (bulbi, tuberi, rizomi). Perché si osservi la presenza di questa cenosi (Asaro-Carpinetum betuli) è però necessario che la dolina possieda caratteristiche morfologiche particolari in fatto di rapporto profondità/ampiezza, rocciosità, esposizione, spessore del suolo, così da mantenere al suo interno un topoclima più fresco e umido (improntato quindi a un maggiore continentalismo) che ne sottrae alcune parti al clima generale. È per questo motivo che il carpinetto di dolina è considerato una cenosi atipica (extrazionale) influenzata dalle condizioni topoclimatiche più che da altri fattori. In particolare, gli aspetti di questo bosco più legati ad ambienti rupestri o di crollo sono contrassegnati da Actaea spicata, Cardemine (= Dentaria) enneaphyllum, Geranium robertianum e ancora una volta non manca Asplenium trichomanes.
Il lato più appariscente del carisismo è tuttavia espresso dalle cavità ipogee: grotte e abissi che costellano l’altopiano. Sebbene al loro interno umidità e temperatura tendano ad aumentare, la parcella, progressiva diminuzione della luminosità interna gioca un ruolo decisivo sul piano ecologico, rendendole sempre più inospitali per la colonizzazione vegetale.

Si ha così che all’imboccatura (la cosiddetta fascia liminare) la presenza vegetale è ancora cospicua ed è fornita da specie che prediligono ambienti ombrosi (scialifice), fra le quali si riconoscono in particolare l’edera (Hedera helix) insieme a molti rappresentanti della flora forestale del bosco di dolina. Più all’interno, dove la luminosità raggiunge valori non tollerati dalle fanerogame (fascia subliminale), si stabiliscono popolamenti di crittogame, in particolare di felci (Asplenium trichomanes, Phyllitis scolopendrium, Polypodium vulgare, P. interjectum), che sono in grado di sopravvivere a una luminosità che può scendere fino a 1/700 di quella esterna; insieme a uno sparuto gruppetto di briolette, esse formano l’associazione della lingua di cervo e della piagiochila delle cave (Phyllitido-Plagiochilietum cavearum). Al di sotto di questa soglia e fino a frazioni di luminosità di 1/1000 si trovano solamente muschi ed epatiche, mentre quantità di luce fino a 1/2000 consentono unicamente l’insediamento di colonie algali e batteriche. Questa seriazione verticale si ripete senza significative variazioni anche all’interno di cavità situate entro la fascia montana, come risulta dagli studi sulla flora vascolare dalle cave e dei pozzi del Carso triestino di Etto Polli (2001).

La fascia montana

Pur considerando che geossiti carsici sono diffusamente presenti un po’ ovunque all’interno di questa fascia, quelli di maggiore estensione ed importanza riguardano il Monte Cavallo di Pordenone, le zone di Pradis, Avasinis, Verzegnis e Sauris, i Monti Musi, i Monti Mia e Matajur, il Cividalese.

Anche in questo caso la colonizzazione vegetale è principalmente offerta da specie casmofile e gleiche, organizzate in cenosi, anche frammentarie, che sono riconducibili a tipologie ben note.

41. Blocchi calcarei variamente scolpiti dalla dissoluzione all’interno del bosco a latifoglie di Pradis (Foto G. Esposito)

42. Estese falde di detrito occluso dalla vegetazione pioniera intorno a Sella Prevala (Foto I. Polli)
carpino nero e frassino della manna (Ostrya carpinifoliae-Fraxinetum ornii), molto diffuso specialmente sull’arco delle Prealpi Carniche e Giulie. La vegetazione che s’insedia direttamente sui substrati calcarei e che varia in rapporto allo sviluppo dei geositi e alle condizioni ambientali, può essere ricondotta principalmente a cenosi rupestri dove la specie fisionomizzante è costituita dalla cinquefoglia penzola (Potentilla caulescens), cui si accompagnano fra gli altri Carex mucronata, Valeriana saxatilis, Spiraea decumbens, Paederota bonarota, Rhododendrum chamaecistus. Quest’associazione vegetale (Potentillacaeae caulescentes), con variazioni floristiche locali, è diffusa lungo tutte le Alpi meridionali, dove occupa posizioni bene esposte e di raramente è rappresentata in particolare nella fascia montana, con sconfinamenti in quella subalpina solo in circostanze climatiche favorevoli e comunque con improvviso della componente floristica più termofila.

Su rocce in ombra, umide e stelliscoide, o più raramente sul fondo di forre carseiche e doline, la vegetazione mutata d’aspetto e la colonizzazione viene effettuata da specie igrofìle quali le felci Cystopteris fragilis, C. alpina (quest’ultima variante altitudinale della precedente nelle fasce subalpina e alpina) e Asplenium viride, solitamente accompagnate da Carex mucronata, Paederota lutata, Physoplexis comosa, Primula auricula, Rhamnus pumilus, Silene pusilla, Viola bifora, Valeria, Valeriana elongata, V. saxatilis. Affioramenti rupestri a minore inclinazione favoriscono mutamenti della compagine floristica con all’avvicinamento della presenza delle cammofiate e l’ingresso di elementi della prateria alpina a zolle chiuso quali Achillea claveneae, Helianthemum alpestre e Sesleria albicans.

I detriti di falda, che imprimono una fisionomia tanto caratteristica al paesaggio delle Alpi sudorientali, si possono considerare come una delle tappe finali nel disgregamento delle rocce calcareo-dolomitiche e pertanto è opportuno riportare, ancorché per sommi capi, i principali tipi di vegetazione che li popolano.

Su macerati immobili di grossa pezzatura il prevalere dei geoelementi mediterraneo-montano, cosmopolita, sudest-europeo e nordillirico determinano la presenza di una cenosi floristicamente povera (Moehringio- Gymnocarpietum robertianum), il cui aspetto caratteristico è dato dalla felce Gymnocarpium robertianum, che più spesso è affiancata da Moehringia muscosa, Geranium macrorrhizum, Adenostyles glabra, Rumex scutatus, Scrophularia jurataensis, fra cui si infiltrano elementi menomorfi come Lamium flavidum, Geranium robertianum, Cyclamen purpurascens, o di pascolo come Biscutella laevigata, Stachys alopecurus, Gatum anisophyllum a testimoniare la collateralità di questi ambienti.

Con l’aumentare della quota nella fascia altimontana, i detriti calcareo-dolomitici a pezzatura media sono popolati da una vegetazione pioniera in cui l’elemento mediterraneo-montano, fortemente presente, si stempera a vantaggio di quelli alpini, circumboreale, eurasiatico ed endemico. La cenosi che ne risulta (Athamanto cretesis- Trietetum argentei) presenta un variegato corteggio floristico in rapporto alle condizioni ecologiche stazionali, caratterizzato dalla progressiva sostituzione degli elementi termofili delle quote minori (1000 m circa in esposizioni fresche) con specie microtermo a quote più elevate; esposizioni meridionali infatti ne consentono la risalita nella fascia subalpina fino a 1900 m di quota. L’aspetto della cenosi ricorda quello di un mosaico, le cui tessere sono costituite da vaste losanghe detritiche alternate a lembi di vegetazione al cui interno si registrano con maggiore frequenza Athamanta cretesis, Trietum argenteum, Rumex scutatus, Cerastium cantabricum, Silene vulgaris ssp. glareosa, Petasites paradoxus, Aquilegia einseleana, Dianthus mosspebulanum ssp. Waldsteinii, Valeriana montana, Campanula cespitosa, Linaria alpina. Esempi significativi dell’associazione, peraltro piuttosto diffuso sull’intero arco alpino friulano, si possono osservare sulli gruppi montuosi M. Serno-Creta Grauzaria, M. Cavallo di Pordenone, M. Chiavals e in val Cimoliana.

La fascia subalpina

Nell’accezione classica, la fascia subalpina si sviluppa al di sopra del limite altitudinale del bosco ed è caratterizzata dall’affermarsi degli arbusteti contorti, in particolare mugheite e saliceti, che formano vasti popolamenti chiusi, ai quali spesso si contrappongono le
forme di colonizzazione vegetale aperte e di radate dei macereti.

Sebbene con molta lentezza, anche in ambiente alpino la coltre vegetale tende a oblitterare la carisfazione, offrendo condizioni favorevoli all’insediamento di tipi di vegetazione più complessi, edificati da arbusti contorti quali sono ad esempio le formazioni a pino mugo (Pinus mugo) e salici (S. hastata, S. waldsteiniana).

Le mughete rappresentano il tipo più diffuso di arbusteto alpino su substrati calcarei o dolomitici, dove Pinus mugo trova le condizioni ecologiche migliori per prosperare. Si tratta di una specie frugale, diffusa dai rilievi della Spagna nordoccidentale fino alle Alpi orientali, seppure con portamento diverso: più frequentemente arboreo ed eretto (simile al pino silvestre) a occidente, arbustivo e prostrato sulle Alpi orientali. L’indole pioniera del mugo gli consente di colonizzare falde di detrito e macereti anche a grossa pezzatura ovvero plaghe rupestri, formando fitti e intricati popolamenti in cui svolge il ruolo di specie edificatrice per eccellenza. Il sottobosco è costituito da basse ericacee fruttrose (Erica carnea, Rhododendron hirsutum, Rhodothamnus chamaecistus, Arctostaphylos uva-ursi, Vaccinium myrtillus, V. vitis-idaea) accompagnate da sorbo alpino (Sorbus chamaemespilus) e da poche specie erbacee.

Ad altitudini comprese fra 1400 e 2100 m, falde detritiche di grossa pezzatura quasi immobili, spesso legate al disfacimento in loco di campi solcati, indipendentemente dall’esposizione, sono la sede elettiva per i popolamenti della felce di Villars (Dryopteris villarsii), che in queste situazioni raggiunge l’optimum ecologico. L’aspetto tipico della cernosi (Dryopteridetum villarsii), che si sviluppa negli anfratti esistenti nella pietraia, viene conferito dall’elevata fedeltà con la quale partecipano, sebbene con scarsa copertura, Adenostyles glabra, Cerastium caprinum, Mocchnia ciliata, Poa minor, Rumex scutatus e Valeriana montana. Sulle falde dei massicci più elevati, fra la fascia subalpina e quella alpina (1950 e 2300 m circa), in presenza di coltri elastiche più minute, la colonizzazione vegetale, piuttosto rada, si organizza spesso nel papavereto alpino (Papaveretum rhaeticum), presente ad esempio sui monti Coglians, Bivera-Clapenov, Premagrossi, Creta Grauzaria e Dolomiti Pesarine.

La mobilità dei depositi detritici, alimentati dal continuo disfacimento delle pareti sovrastanti, pone un serio ostacolo all’insediamento e alla sopravvivenza delle piante, alcune delle quali ricorrono a particolari adattamenti, come ad esempio l’espandersi sulla massa superficiale possibile nel tentativo di sfuggire al rischio di affogamento, oppure nel dirigere verso monte i ricacci primaverili per
bilanciare il continuo slittamento verso valle del materiale superficiale per gravità.

La fioritura del papavereto è vistosamente contrassegnata dalle grandi corolle gialle del papavereto retico, esponente di un numeroso gruppo di entità afferenti al ciclo del papavero alpino (Papaver alpinum ssp. rheticum), ma suggestive note di colore nella desolata monotonia del ghiaccio sono portate anche da Thlaspi rotundifolium, Cerastium carinthiacum, Achillea oxyloba, Campanula cochlearifolia, Adenostyles glabra, Arabis alpina, Linaria alpina. Sui maggiori rilievi delle Alpi Giulie (Jof di Montasio, Jof Fuart, Canin), è stata descritta una variante geografica del papavereto alpino, il Papaveretum julici, contrassegnato fra l’altro dalla presenza dell’endemico Papaver alpinum subsp. ernesti-mayeri a fiore bianco.

La fascia alpina

Gli aspetti più appaissenti del carismosi da alta quota si presentano in modo particolarmente significativo sul massiccio del M. Canin, sul M. Cavallo di Pontebbba e di Pordenone (Val Grande), sulle Clette d’Aip e sulle Dolomiti Pesarine. I fenomeni geomorfologici si sviluppano al di sopra della fascia degli arbuschi contorni, quindi la vegetazione si esprime unicamente in forma di cenosi erbacee di valletta rivale, di rupe, di macereto e di prateria a zolle discontinue.

Le vallette rivale sono depressioni o avvallamenti, solitamente di piccole dimensioni che si aprono ai piedi di pareti rocciose, su ghiaccio dove possono svilupparsi suoli mineralizzati e l’inevitabile perdura molto a lungo (tavolta più di 9 mesi l’anno). L’inclinazione varia da suborizzontale a fortemente inclinata (fino a 35°-40°). Il tenore idrico del terreno subisce nel corso della stagione notevoli oscillazioni, passando dall’imbibizione tipica del periodo del disgelo a condizioni di aridità estiva in particolare su roccia madre calcarea o dolomitica. L’alta specializzazione delle piante colonizzatrici dipende principalmente dalle condizioni climatiche e in particolare dalla brevità del periodo vegetativo, che impongono una serie di adattamenti biologici che le piccole dimensioni, il portamento prostrato, la produzione di gemme florali per l’anno successivo già durante l’estate e la messa in atto di meccanismi di riproduzione vegetativa ai quali le piante ricorrono in rapporto all’intensità degli stress ambientali cui sono sottoposte. La flora si distingue per la presenza di alcuni salici nani (Salix retusa, S. reticulata) che fisionomizzano il Salicetum retuso-reticulatae. Sulle Alpi Friulane essi sono accompagnati con spiccate fedeltà da Ho-mogynae discolor, Carex parviflora, Persicaria (= Polygonum) vivipara, Poa alpina, Silene acaulis, Solidarnia alpina, S. minima e Saxifraga androsacea.

La colonizzazione delle rupe carbonatiche da parte di vegetali superiori si prefigura come un opportunità riservata a piante con elevata specializzazione, imposta dalle severe condizioni ambientali. Le possibilità d’insediamento sono infatti limitate dal congiungersi delle avversioni climatiche e dall’ostilità delle situazioni eclogiche: da un lato l’irricidamento può avvenire solo in presenza di fessure che consentano la penetrazione, lo sviluppo dell’apparato radicale e il depositarsi di terriccio (sovente prodotto dalla marcescenza delle foglie basali delle stessa pianta), dall’altro la forte attività e la natura del substrato rendono molto difficile l’approvvigionamento idrico (fornito da piogge e nebbie), in particolare su pareti esposte a Sud, sottoposte a escursioni termiche che giornalmente e durante l’arco dell’anno possano subire forti oscillazioni (50°C e oltre). Un ulteriore fattore limitante è dato dalla ventosità, che esercita una pronunciata azione essiccativa e erosiva. I calcari, specie ad altitudini elevate, costituiscono quindi biotopi molto severi, dove le capacità di resistenza dei vegetali sono sottoposte alle continue sollecitazioni dei fattori e degli agenti del clima. Per questi motivi, il tentativo di colonizzare le rupe esige l’elevata specializzazione di cui s’è detto e porta alla formazione di popolamenti fortemente discontini. L’indole delle specie cassefatte si manifesta in genere attraverso adattamenti evolutisi sia nell’habit (aspetto pulcitato, con addensamento delle parti aeree in un volume minimo, solitamente emisferico), sia nel metabolismo. La cenosi vegetale che forse meglio caratterizza la fascia alpina delle Alpi Friulane è il potentilleto a cinquefoglia delle Dolomiti (Potentilla nitida) che, dal nome della specie edificatrice, è noto come Potentilletum nitidae. La ricchezza floristica della cenosi è ovviamente legata all’esten-
sione, alla posizione e alla configurazione della parete rocciosa, da cui dipendono la quantità e la tipologia delle specie presenti; fra quelle più tipiche possiamo ricordare Minuartia sedoides, Saxifraga oppositifolia, S. caesia, Sesleria sphaerocephala, Festuca alpina, Minuartia cherlerioides, Silene acaulis, Erichthonium nanum. Sugli spunti di roccia poco estesi che molto spesso caratterizzano i siti carruci, oppure su cenere e fratture, la cenosi si sviluppa in modo discontuito e i suoi componenti fondamentali si susseguono in modo disomogeneo.

Su macereti fini, su terrazzi carruci dove vi sia accumulo di terriccio superficiali, in condizioni di più limitato innevamento e per lo più con forte acclività, la colonizzazione vegetale assume l’aspetto di una prateria a zolle discontinue dominata dai tappeti del camenato alpino (Dryas octopetala) e i robusti cespi della carice rigida (Carex firma): il firmeto (Gentiana terglouensis-Caricetum firmae). Sfruttando le sinuosità del terreno per resistere all’azione erosiva dei venti e al ruscellamento superficiale delle acque meteoriche, il firmeto crea una sottile e discontinua coltre umica, propagandosi lentamente ed esercitando un’azione stabilizzatrice sul substrato. Lo stadio più primitivo della cenosi è rappresentato dal denso tappeto formato dall’intreccio dei fusti strisciati del camenato e del salice alpino (Salix alpina), sul quale s’inerisce successivamente la specie guida della cenosi, Carex firma che, pur essendo assai frugale, possiede un apparato radicale di scarsa consistenza che la rende vulnerabile ai sedimenti del terreno e alle slavine, tanto che non è infrequente rinvenire le zolle smottate alla base dei pendii. Spesso questo stadio si sviluppa alla sommità di ghiacini ed è considerabile come una fase di transizione fra la vegetazione instabile dei detriti di falda e quella dei substrati stabiliti, propri delle praterie alpine, ancorché a zolle aperte.

Il firmeto è diffuso dalle Alpi Centrali alle Caravanche, ma localmente ne è stata descritta una raza geografica caratterizzata da elementi a distribuzione alpino-orientale, fra i quali la genziana del M. Tricorno (Gentiana terglouensis), che è stata prescelta per designare la cenosi nell’appellativo scientifico. Il corteggio floristico appare particolarmente ricco in rapporto alle condizioni edologiche; fra le specie accompagnatrici più frequenti figurano Phyteuma sieberi, Saxifraga caesia, Helianthemum alpestre, Minuartia gerardii ed Euphrasia salisburgensis.

Gli stadi successivi della colonizzazione vegetale sono visualizzati dall’affermarsi del firmeto a Sesleria varia e Carex sempervirens, che stabilizza in modo permanente la coltre vegetale e consente l’insediamento di specie più esigenti in fatto di suolo, cosa che comunque si verifica solamente in presenza di zone di accumulo di terreno sufficientemente estese, come può accadere quando i solchi ed i crepacci carruci sono poco profondi o ai margini dell’area carsificata.
Bibliografia essenziale

Vegetazione

POLOLI L., 1982. La vegetazione del Carso Isontino e triestino. Trieste.

Carsismo

L'ingresso del Bus de la Lum
(foto E. Lazareth)
Il Massiccio del Cansiglio-Cavallo si estende lungo la fascia Ovest delle Prealpi Carniche secondo una direzione NNE-SSO con il versante occidentale parzialmente condiviso con la vicina Regione del Veneto. Presenta la caratteristica di elevarsi ridipò dalla Pianura Friulana occidentale come un "muro montuoso" sino alla quota degli altipiani oltre i 1000 metri. Racchiude due grandi conche di origine carsica: la Conca di Pian del Cansiglio ad Ovest e la Conca di Piancavallo ad Est. La temperatura media annua del Pian del Cansiglio risulta essere di 2°C inferiore a quella che dovrebbe avere una zona aperta alla stessa altitudine. Gli estremi termici restano in genere compresi tra 29°C (in luglio) e meno 20°C (in gennaio) con una umidità atmosferica che assume valori elevate quasi tutto l'anno.

L'area Cansiglio-Cavallo consiste in vasti affioramenti calcarei variamente carsicificati con notevoli e diffuse forme carsiche sotterrane e superficiali. Fra queste ultime dominano le doline che bordano l'altipiano nel versante orientale, simmetriche, ravvicinate, profonde, dai fianchi talvolta interessati da splendidi campi solcati. Si contano 250 cavità e fra le più importanti si ricordano i tre abissi principali: il sistema Bus de la Lum (15/153Fr) – Pozzo dei Bellunesi (3506/1894Fr) profondo 180 m, il Bus de la Genziana (10000VT) profondo 587 m e l'Abisso del Col de la Rizza (904/410Fr) con quasi 4 km di sviluppo complessivo per 794 metri di profondità. Carsico è anche l'apparato sorgentifero del Fiume Livenza (sorgenti Gorgazzo, Santissima, Molinetto ed altre minori), che ha portate medie complessive superiori a 16 m³/sec.

Le formazioni geologiche che riguardano questa area hanno un'età compresa tra la fine del Miocene ed il Norico. Le rocce che caratterizzano le corrispondenti area si trovano ad Ovest in parte del Cretacico del dominio della Piattaforma Carbonatica Friulana, che si era instaurata alla fine dell'Alpino e che ha avuto un ruolo geologico importante nell'evoluzione delle Alpi Meridionali. Esso costituisce il lembo nordoccidentale della piattaforma carbonatica cretacica, che si estendeva lungo l'Adriatico fino alla Puglia e che era circon data a settentrione, da Ovest ed a Est, dal Bacino Bellunese e da
quello Giuliano dell’Alto Isonzo. Il raccordo tra la piattaforma e il bacino pelagico avveniva attraverso una scarpata ed è sul margine superiore di questa che si determinano condizioni ambientali, quali acque poco profonde ben ossigenate, tali da favorire un’intensa attività di organismi costruttori. La presenza di tale scogliera a sviluppo più o meno lineare ha condizionato la sedimentazione sui due lati opposti durante tutto il Cretacico. Con il passare del tempo si sono determinate le condizioni ottimali per la genesi di quello che è stato definito complesso di scogliera (reef-wall): alcuni fossili esemplari di Rudiste sono ben visibili sul corso a blocchi e solchi dei Col dei Sciosi sul Monte Candaglia, il cui nome “Sciosi” si riferisce proprio alle conchiglie. Quindi il Massiccio del Cansiglio-Cavallo è quel che resta di una antica “barriera” ricca di organismi marini cresciuta in un antico mare caldo tropicale.

In generale questo gruppo montuoso può essere considerato come una unità tettonica omogenea compresa tra le seguenti dislocazioni di carattere regionale, che lo delimitano: a Nord dal Sovrascorrimento Periodiadiaco Barcis-Staro Selò; nella parte meridionale dalla Linea di Canova – Aviano e Mariago a Est e dalla Linea di Montanaro a Ovest, che hanno caratteri di faglia inversa o sovrascorrimento; a Nord - Ovest dalla Linea di Santa Croce a carattere trascorrente.

Il carisma interessa con modalità differenti tutto il Cansiglio-Cavallo a seconda della litologia e dell’assetto geologico-strutturale: in particolare gli altopiani presentano morfologie carische con caratteristiche intermedie tra quelle di un corso di bassa quota e quelle di un corso alpino e le altre forme sono spesso miste, legate anche all’attività glaciale.

I luoghi ad altopiano carisco racchiudono al suo interno aspetti molto vari: si riconoscono aree a doline, come quella che sovrasta la scarpata orientale, ove fra doline di grandi dimensioni si innalzano dossi cupoliformi; l’ampia conca chiusa dal fondo pianeggiante nella parte centrale, polje-carisco non più soggetto ad inondazioni in quanto gli inghiottiti sono in grado di smaltire tutta l’acqua che la depressione riceve; una valle fluviale, il valone Vallerch (fuori regione, in Veneto) impostato su rocce marnose.

Il massiccio può essere così suddiviso morfologicamente in tre fasce: la fascia delle creste alle quote superiori, la fascia degli altopiani e delle conche a quota intermedia e la fascia delle scarpate che corrisponde ai piedi del gruppo montuoso.

La prima fascia comprende le sommità più elevate: il Cimon del Cavallo (2251 metri), che separa le due grandi conche, e il Col Nudo (2471 metri), il quale funge da spartiacque tra la Conca dell’Alpago e la Vai Cellina. Nell’insieme le vette costituiscono una catena sinuosa e racchiudono ampi valloni, circhi glaciali con forme carische tra le più varie, come estesi karren e crepacci. Il
Carcismo ipogeo è di tipo alpino, ma non è particolarmente sviluppato: sono presenti alcune cavità, nessuna delle quali supera i 240 metri di profondità (la più profonda è la Fessura della Tosca, 5136/2865Fr) e le morfologie superficiali sono spesso di origine nivo o glaciale.

La fascia degli altopiani e delle conche è costituita da un sistema di altopiani di forma pressoché rettangolare, dalla superficie complessiva di circa 450 km², con quote per lo più comprese tra i 1000 ed i 1500 metri. Non presenta caratteri omogenei: si tratta di una fascia di larghezza variabile, caratterizzata da un rilievo più morbido nel settore occidentale e più tormentato nel settore orientale. Gli altopiani principali sono il Piancavallo, che si estende tutto nei calchi ed è racchiuso tra le vette principali del massiccio, ed il Pian del Cansiglio, un polje di contatto evolutisi anche per meccanismi di corrosione marginale, caratterizzato dall'affioramento dei calchi della Formazione di Monte Cavallo nel settore orientale friulano e dai calchi marnosi ricchi di selce della Scaglia nella parte occidentale e settentrionale veneta. Per questo motivo la superficie del Cansiglio si presenta talora con un carso a blocchi ed una fascia tormentata da un notevole numero di doline da grandi a medie, soprattutto nella zona di Monte Candaglia o Col dei Sciosi, fra le quali spesso si elevano boschi pressoché conici o piramidali. Altrove invece il carso è caratterizzato da dorsali arrotondate ed ampie Valli intagliate con doline a pozzo. Il carattere massico ed resistente della roccia favorisce un paesaggio dominato da forme massicce e modellate, rese tormentate da fori e stretti crepacci, spesso allineate lungo direzioni preferenziali di fratture. Vista la copertura della Scaglia nella Conca del Cansiglio, nella parte occidentale prevalgono doline di subsidenza a perimetro subcircolare e dal fondo piatto: si formano in rocce coerenti permeabili, ma non molto solubili che poggiano su rocce solubili come i calchi. La formazione di cavità cariose nelle sottostanti rocce solubili provoca fenomeni di crollo e subsidenza, cioè di abbassamento delle formazioni rigide sovrastanti. Mentre nella zona del Piancavallo, Arneri e Cornier, dominano le doline di dissoluzione normale o crollo, spesso a imbuto molto fitte tra loro e ampie conche ricche di morfologie superficiali. La zona del Col Cornier presenta un bellissimo carcismo di superficie molto più evidente che in altri luoghi perché non sempre coperto dal bosco, contrariamente ai fenomeni ipogei poco sviluppati in profondità.

Nonostante la presenza di grandi sorgenti ai piedi del gruppo montuoso e le precipitazioni medie annue siano di circa 1800 mm, nelle conche non esiste una idrografia superficiale. Nella Conca del Cansiglio è invece accertata una complessa idrografia sotterranea: la vasta cinclina dell’altopiano costituisce una sorta di conca endoreica, che favorisce la concentrazione delle acque verso il centro, ma la fitta rete di fratture della zona “subcutoanea” carica le conduce in profondità.

La fascia delle scarpe delimita gli altopiani ed ha uno sviluppo irregolare, disturbato da ampi incavi di imbuti torrentizi o di nicchie di frana. Consiste in una scarpata occidentale con orientamento NNE - SSO, in una scarpata meridionale perpendicolare a questa ed orientata in senso ONO - ESE ed in
una scarpata orientale allungata nuovamente in direzione NNE - SSO.

Alla base della scarpata sud-orientale del massiccio, a quote comprese tra i 30 e i 50 m, sgorgano numerose sorgenti, le cui acque alimentano una estesa palude e originano alcuni rami fluviali che, confluen-do, formano il Fiume Livenza. Il Gorgazzo, la Santissima e il Molinetto sono le sorgenti più importanti che devono la loro origine allo sbarramento operato dal sistema di faglie inverse della Linea di Caneva - Maniago. Le loro acque presentano tenori molto bassi di magnesio, cosa che indicherebbe una provenienza da un'area data quasi completamente da formazioni calcaree. Il Gorgazzo (61/36Fr) è una sorgente ascendente o "vaclusiana", intendendo con questo termine che la sorgente è stata originata in seguito allo sbarramento imposto dal contatto fra i calcari del massiccio e le formazioni a permeabilità inferiore (conglomerati miocenici). Non è una sorgente permanente: potrebbe essere definita una "sorgente vaclusiana di troppo pieno", in quanto lunghi periodi con assenza di piogge provocano l'abbassamento della superficie piezometrica al di sotto della quota di sfioro. Quando invece l'alimentazione della falda supera lo svuotamento, l'acqua percorre i canali carsici e risale in superficie all'interno del sifone, che caratterizza questa scaturigine. Meta ambita da sempre di ricerche speleosubaquee, in seguito ad una complessa campagna di esplorazione, dal febbraio 2008 questa sorgente risulta essere la più profonda d'Italia, raggiungendo i 212 metri dal piano campagna (con possibilità di continuazione) ed uno sviluppo di circa 450 metri, gran parte in verticale con una serie di pozzi dalle dimensioni anche di 10 x 10 metri. Si stima che le competerebbe complessivamente un bacino di ricarica di circa 170 Km².

La Santissima ed il Molinetto, invece, sono entrambe sorgenti per soglia di permeabilità sottostampa, in quanto il complesso "mono permeabile" si trova sottostapo
al complesso idrogeologico “più permeabile” per fratturazione e carsismo. A differenza del Gorgazzo, non vi è un sifone ascendente o perlomeno non è visibile, dal momento che il detrito di calca ne copre le uscite. Alla sorgente della Santissima competerebbe un bacino di alimentazione di circa 500 Km², mentre al Molinetto, visto il regime, andrebbero attribuiti almeno 230 Km² di bacino.

Queste diverse caratteristiche giustificano i differenti regimi sorgivii: la sorgente del Gorgazzo è caratterizzata da un regime molto irregolare con picchi di portata elevati, che si normalizzano dopo poche ore; la Santissima e il Molinetto presentano oscillazioni del livello idrico più contenute con tempi di esaurimento delle piene più lunghi.

Le cavità carsiche oggi conosciute nel Massiccio del Cansiglio-Cavallo sono più di 250. Il carsismo profondo è molto sviluppato, sia con piccole voragini, sia con abissi. Il carattere comune e generale è il prevalente sviluppo verticale, anche se non mancano alcuni casi di grotte molto estese: le grotte sono costituite da un unico pozzo che finisce in una sala di crollo spesso comunicano direttamente con l’esterno sul fondo di una dolina. La massima densità di cavità si registra nella zona del Col di Arneri nei pressi delle piste di sci del Piancavallo e del Col Cornier, con numerose voragini e grotte relativamente poco profonde che si confondono spesso tra fitti solchi nella vegetazione. Nei pressi di Casera Valle Friz sì trova un unico Abisso che prende il nome da questa baita ed è profondo poco più di 100 metri. Anche nel settore orientale della Conca del Cansiglio, nella zona che comprende la dorsale del Monte Candalgia, si aprono numerose cavità, alcune delle quali sono le più profonde del massiccio e sono generalmente caratterizzate da profondi pozzi di ingresso e da vasti saloni terminali.

Le cavità più famose sono il Bus de la Lum (15/153Fr) e l’Abisso del Col della Rizza (904/410Fr). Il primo è il più ricco di storia a livello anche nazionale: si aprì a 1036 metri di quota nel bosco orientale della piana del Cansiglio e consiste in una voragine profonda 180 metri. Sul fondo presenta però un breve ramo ricco di splendide concrezioni, solitamente poco diffuse a queste quote. Ha un posto importante nella storia della speleologia italiana, perché ha attirato l’attenzione dei primi esploratori all’inizio del ’900, con pionieristiche spedizioni conoscitive. In seguito ad una di queste venne erroneamente considerato come uno degli abissi più profondi al mondo, se non l’unico a quel tempo. La rettifica sulla sua vera e ancora attuale profondità venne certificata solo nel 1960.

L’Abisso del Col della Rizza, che si aprì nel bosco della Candalaglia a 1100 metri di quota, noto dagli anni ’60 fino ad un centinaio di metri di profondità, è oggi nuovamente in esplorazione grazie al G. S. Ferrarese e al G. S. Urbino, che si avvale della collaborazione di gruppi speleologici locali e nazionali. Al momento, infatti, risulta in via ufficiosa avere una profondità prossima agli ottocento metri (794 m) ed uno sviluppo di quasi quattro chilometri, il che lo farebbe diventare la grotta più profonda di tutto il massiccio. Oltre che per le dimensioni, si distingue dalle altre grotte del Cansiglio per la presenza di diffuse e varie forme di concrezionamento, del tutto simili a quelle delle cavità del Carso Classico. Ciò che la rende ancora più interessante sono le numerose condotte freatiche, spesso
Nell’Abisso dei Col della Rizza, attualmente in esplorazione, si rinviene importanti gruppi stalagmitici e colonnari.

(Foto C. Cavallari)
anche concrezionate, la varietà e l'alternanza di morfologie quali pozzi profondi anche 90 metri, grandi sale, forre, meandri e gallerie.

Nel settore occidentale veneto del Consiglio, dove affiora la Scaglia, sono note poche cavità che sostanzialmente fungono da inghiottiti temporanei delle acque meteoriche. L'eccezione è il Bus de la Genziana (1000 VTV), che da pochi anni è diventata la seconda cavità più profonda del gruppo del Consiglio-Cavallo: si apre nei calcari debolmente marnosi della Scaglia Grigia e si sviluppa quasi interamente nei calcari della Formazione di Monte Cavallo per una profondità di 587 metri. È anch'essa caratterizzata dall'alternarsi di pozzi, forre, gallerie e sale per quasi cinque chilometri di sviluppo planimetrico complessivo. Secondo recenti esplorazioni le concrezioni sono presenti solo in alcuni tratti a circa 100 metri di profondità. Inoltre si distingue per essere la prima ed unica in Italia Riserva Naturale Ipogea grazie al Decreto Ministeriale del 12 luglio 1987 ed è gestita dal Corpo Forestale dello Stato.

56
Pozzo nella grotta Genziana
(Foto E. Zucchiello)

57
Planta e spaccato del Bus de la Lum
ridisegnati dai dati del Catasto Regionale delle Grotte

58
La Conca del Consiglio
del Col Cornier
(Foto A. Casagrande)
Il carsismo delle Prealpi Carniche

Alle Prealpi Carniche appartengono le catene per lo più rettilinee ed a decorso longitudinali, che si estendono nella porzione prealpina occidentale. La zona è contraddistinta da una successione stratigrafica potente circa 7000 m con età variabile dal Carnico Inferiore al Miocene, costituita da rocce prevalentemente carbonatiche. Spostandosi da Nord verso Sud è possibile ritrovare, in una sequenza pressoché continua, rocce via via più giovani, disposte secondo fasce allungate in direzione Est - Ovest.

Dal punto di vista strutturale lo stile tettonico predominante è quello a scaglie embricate, favorito dalla presenza di rocce a comportamento prevalentemente fragili. Nel settore pedemontano predominano, invece, le strutture a ploghe, poiché prevalgono le rocce più giovani e a comportamento più plastico. La diffusione dei calcari unitamente al condizionamento strutturale hanno consentito lo sviluppo dei fenomeni carsici, che si esprimono sia con evidenti forme superficiali, che spesso conferiscono al paesaggio il caratteristico aspetto ondulato e crivellato di doline, sia con la presenza di estesi sistemi di cavità, che drenano le acque nel sottosuolo verso copiose sorgenti. La grande asperità di queste montagne ed i forti dislivelli

Legenda
- Depositi scolati
- Calceri
- Dolomie
- Flysch
- Evaporiti
- Ignei e metamorfiche
- Altre rocce
- Cavità

A cura di
Walter Boschin
che talvolta è necessario superare per raggiungere le aree speleologicamente interessanti dal punto di vista esplorativo, fanno sì che alcuni di questi sistemi sorgivi rimangano ancora oggi poco conosciuti. Al momento, in totale, sono circa 650 le cavità note.

Area di Avasinis

Questa zona carsica comprende tutte le alture circostanti l'abitato di Avasinis (190 m s.l.m.) estendendosi fino alle pendici meridionali dei monti Cuvria, Cuar (che con 1478 m s.l.m. è la cima più elevata dell'area) e Flagel, che la delimitano a Sud. A settentrione è delimitata dal Monte Corgnul, dalla Forchia Amula e dal Monte Palonis. Questi confini coincidono sia con il limite di distribuzione dei calcarri ad occidente, sia con due importanti strutture tettoniche ad andamento Est-Ovest che funzionano da confine idrogeologico: la Linea Pinedo-Avasinis a Nord e la Linea Barcis-Staro Selo a Sud.

La quota media dell'intera area è di circa 650 m s.l.m. e la superficie sottesa è di circa 35 km², dei quali un quinto sono contraddistinti dalla presenza di rocce molto carsificate. Le rocce affioranti hanno un'età compresa tra il Norico – Retic (età della Dolomia Principale) e l'Eocene inferiore (età del Flysch di Claut).

La concentrazione dei fenomeni carsici ipogei ed epigei è maggiore nelle aree circostanti la località Stavoli Grignes, ove affiorano rocce calcaree ed in particolare le Breccie di Grignes, in cui si aprono le più importanti cavità conosciute. In quest'area il paesaggio è contraddistinto da tutte le morfologie proprie di un corso avanzato ed in particolare sono numerosi ed estesi i campi solcati e frequentissime le doline di dissoluzione. Loggermente diversa appare la situazione delle aree situate a meridione della congiunzione Monte Cuar- Monte Flagel, dove i fenomeni carsici sia epigei che ipogei sono molto meno importanti.

In entrambi i casi spicca comunque la scarsità delle acque superficiali: i pochi tor-
renti esistenti, appartenenti ad un reticolo drenante poco evoluto, si attivano solamente in occasione di abbondanti precipitazioni. La maggior parte dell’acqua che cade sul territorio viene rapidamente drenata nel sottosuolo e percorrendo importanti sistemi di cavità carsiche viene convogliata verso numerose sorgenti. Molte di esse sono captate a scopo potabile e alcune riforniscono i circa 3000 abitanti del comune di Trasaghis.

Le cavità esplorate sono circa una trentina. La profondità da esse raggiunta non è mai ragguardevole restando sempre inferiore ai 100 m; lo sviluppo planimetrico di alcune cavità si pone invece come un aspetto molto interessante dal punto di vista speleologico. Nell’area, infatti, è presente la Risorgiva di Eolo (1671/658Fr), che con i suoi 5316 metri di sviluppo è uno dei sistemi più estesi della regione. Si tratta di una grotta attiva i cui passaggi sono in parte percorsi da importanti deflusse d’acqua che si sono fatti strada lungo piani di faglia e diaclasi.

Oltre a questa cavità-risorgiva si conoscono altre importanti grotte, sempre caratterizzate da un andamento prevalentemente orizzontale; tra queste è doveroso citare la Grotta Sandwich (6460/3750Fr) che ha uno sviluppo di soli 300 metri ma è idrologicamente collegata alla Risorgiva di Eolo, la Fiepa delle Sbarbe (3928/2204Fr) che con i suoi 853 metri di dislivello è la cavità più profonda dell’area e la Risorgiva di Eolo (1671/658Fr), che con i suoi 5316 metri di dislivello è la cavità più profonda dell’area e la Risorgiva di Eolo.

61. Serrone geologica interessante i vari della Risorgiva di Eolo

62. Modello tridimensionale geologico dell’area di Avesinis. In viola le dolomie, in blu i calcari giurassici, in verde i calcari cretacici terziari, in marrone il Flysch e la melasse terziarie. In nero le piante delle principali cavità

63-64. Spaccato e pianta della Risorgiva di Eolo ridisegnati dai dati del Catasto Regionale delle Grotte

65. Il superamento di un inglobato nella Risorgiva di Eolo.

(Foto F. Pezzeta)
va del Col del Sole (1777/721Fr) che con uno sviluppo accertato di 479 metri è molto conosciuta grazie alla sua imponente cascatta visibile nei periodi di intense precipitazioni.

Massiccio del Monte Verzegnis

Si presenta come una delle massime elevationi delle Prealpi Carniche orientali, raggiungendo i 1914 m s.l.m. con l’omonima cima. L’area, che ha un’estensione di circa 45 km², è delimitata a Nord dall’alveo del Fiume Tagliamento, ad Est dal Rio Seazza, a Sud dalla Valle di Verzegnis ed a Est dall’omonimo altipiano. Geologicamente il territorio è costituito da una potente sequenza di rocce carbonatiche di natura sia dolomitica, nella parte inferiore e meno potente della successione, che calcarea. La sequenza è sede di un diffuso carsismo che rende il sottosuolo molto permeabile, per cui l’intero massiccio può essere considerato come un’idrostruttura in grado di immagazzinare e restituire notevoli volumi d’acqua. Alle pendici settentrionali e occidentali del gruppo montuoso sono presenti numerose sorgenti carsiche perenni, le cui ubicazione è spesso direttamente connessa con la presenza della Linea Monte Dof – Monte Audà, sovrascorrimento di importanza regionale che attraversa la base dei versanti Nord ed Est della montagna generando una soglia di permeabilità.

Le manifestazioni di carsismo epigeo più evidenti si rinvengono alle quote più elevate nella zona sommitale del massiccio ed in particolare presso la conca di Casera Val, un bellissimo esempio di circo glaciale con diametro prossimo al mezzo chilometro, e presso l’altipiano di Casera Lovinzola. Qui, grazie anche alla presenza di litotipi molto carsificabili (Calcarì di Soverzene, Calcarì del Dachstein ed Enrinite del Monte Verzegnis) il suolo è costellato da numerose piccole doline di dissoluzione (diametro 4-5 metri) che, unitamente alla presenza di coperture detritiche e moreniche, rendono il paesag-
gio tipicamente ondulato. Non sono molto frequenti le piccole forme di dissoluzione carsica, dato che poche e ristrette sono le superfici rocciose completamente prive di coperture detritiche o suoli. In particolare le piccole forme carsiche epigee trovano la loro massima espressione negli affioramenti di calcari ad encriniti, dove crepacci, solchi e scannellature danno vita ad un paesaggio dall’aspetto accidentato. Nella zona sommitale del massiccio, tra le circa venti cavità catastate, si trovano le due grotte più profonde di tutto il gruppo montuoso: l’Abisso di Casera Val (312/113Fr), fondo 139 metri, che si sviluppa con una sequenza di pozzi nei Calcari del Dachstein, e l’Abisso del Monte Lovinzola (1825/770Fr), che con alcuni pozzi di grandi dimensioni sviluppatisi per dissoluzione nei Calcari di Soverzene raggiunge la profondità di 103 metri.

I versanti del Monte Verzegnis sono, invece, quasi completamente privi di importanti manifestazioni carsiche superficiali. La loro morfologia mette però in luce un importante aspetto geologico del territorio. Il versante nord occidentale è infatti caratterizzato da un esteso e ben sviluppato reticolo di vallecole e forre torrentizie, mentre quello Nord orientale ospita un reticolo idrografico molto ridotto ed appena abbozzato. Questa marcata differenza rappresenta la naturale conseguenza di una differente costituzione geologica: a SE affiorano rocce calcaree e dolomitiche massicce molto permeabili e quindi decisamente drenanti, mentre a NO affiorano rocce fittamente stratificate a carattere marnoso, che consentono durante le precipitazioni un ruscellemento superficiale molto più intenso. Le manifestazioni carsiche ipogee più importanti e speleologicamente interessanti sono legate all’area sorgiva e le cavità più estese sono ubicate in prossimità delle sorgenti del Piere e del Torrente Landaua, situate sul versante settentrionale, e presso le sorgenti dell’Ambieta che scaturiscono alle pendici del versante orientale.

In entrambe le zone gli ipogei hanno un andamento prevalentemente orizzontale.
A questo gruppo di cavità appartiene anche la grotta Magico Alverman (6114/3509Fr), che con i suoi 1084 metri di sviluppo si pone come la cavità più estesa di tutto il massiccio. Si aprì nei Calcarri di Chiampano lungo il greto del Rio Morto ed è costituita da un complesso di gallerie ormai quasi inattive, spesso semisotterrate dai depositi di riempimento e talvolta ricche di splendide concrezioni calcaree.

Prelpi Carniche centro-meridionali

Questa zona, che rappresenta una delle aree della regione con la più alta concentrazione di fenomeni carsici, si estende dal gruppo del Monte Ciaurlec (1148 m s.l.m.) al Torrente Arzino, interessando il bacino del Torrente Cosa ed il Monte Pala (1229 m s.l.m.) e comprende un territorio di circa 100 km².

Geologicamente la zona è costituita prevalentemente da rocce carbonatiche tra le quali si riconoscono i litotipi afferenti alle formazioni di età cretacea del Cellina e del Monte Cavallo, costituite da calcarri molto puri che per estensione ricoprono circa la metà del territorio considerato. Queste litologie sono interessate da un'intensa carsificazione dovuta anche alla favorevole situazione tettoni-
ca. Esse costituiscono l'ossatura del Monte Ciaurlec e danno origine a spettacolari forme carsiche. Nelle zone più depresse è spesso presente anche il Flysch di Cormons, mentre sul monte Pola affiora una successione carbonatica costituita alla base dalla Dolomia Principale e quindi da termini calcarei.

Dal punto di vista strutturale l'area è inserita in un contesto piuttosto complesso per la presenza di numerose linee tettoniche di importanza regionale. Sono le pieghe l'elemento strutturale dominante della zona, situata a meridione del sovrascoglimento periadiatrico: la maggior espansione è rappresentata proprio dall'anticlinalne del Monte Ciaurlec.

Le aree maggiormente carsicate sono rappresentate dal Monte Ciaurlec stesso, dall'altopiano di Gerchia, dal bacino del Torrente Cosa e da quello del Torrente La Foce.

Le manifestazioni carsiche superficiali sono caratterizzate in particolare sul Monte Ciaurlec da piccole ma numerosissime doline e rari campi solcati. Da segnalare è la profonda dolina di Vimpicchiore che si trova sul fianco Sud occidentale del rilievo.

Un alto grado di incarsimento è presente presso l'altopiano di Gerchia, soprattutto nella parte meridionale, dove sono rilevabili numerose doline in genere allungate e non simmetriche talvolta con bordi coalescenti, e diversi affioramenti rocciosi intensamente carsificati.

Morfologicamente interessante è la profonda forra carsica, lunga circa 1 km delimitata da pareti alte anche 250 - 300 m che il Torrente Cosa ha scavato a valle dell'abitato di Gerchia nei Calcari del Cellina: lungo questa si apre l'ampia caverna nota con il nome di Grotte Verdi di Pradis (8/118Fr) attrezzata per la visita turistica. Il carsismo ipogeico è concentrato in particolare in certi settori dove affiorano i calcari cretacici.

Sul rilievo montuoso del Monte Ciaurlec sono presenti circa 90 cavità e per la maggior parte hanno un andamento prevalentemente verticale. Tra queste, che raramente superano la profondità di 50 m si segnala la Cava della Libertà (304/203Fr), la quale con un unico grande pozzo raggiunge i 110 m di profondità. Tra le cavità orizzontali in questa zona se ne segnalano circa una quarantina alcune delle quali idrologicamente attive drenano parte delle acque che si raccolgono sul Monte Ciaurlec. Tra di esse merita particolare attenzione la Grotta della Foos (507/229Fr), risorgiva di troppo pieno situata alla base del versante Nord del gruppo montuoso con uno sviluppo di 2625 metri. Questa cavità ha
una circolazione idrica molto complicata, in cui si possono riconoscere i segni di almeno cinque distinti ruscelli sotterranei.

La più alta concentrazione di fenomeni carsici ipogei si riscontra nell’altopiano di Gerchia, posto ad una quota compresa tra circa 500 e 700 m s.l.m., e dagli immediati dintorni. Qui in un’area di circa 3 km² si contano oltre un centinaio di cavità delle quali molte sono caratterizzate da un andamento complesso anche per la consistenza di vani speleogeneticamente differenti anche se a sviluppo prevalentemente orizzontale. Spesso le cavità sono risorgive o inghiottiti idrologicamente attivi.

Alcune fanno capo al sistema La Val-Noglar (515/242Fr, 574/248Fr, 798/340Fr, 2491/1149Fr), uno dei più importanti ipogei di questo settore, con quasi sette chilometri di sviluppo ed una profondità di circa 250 m. Caratterizzato da un susseguirsi di gallerie, caverne e pozzi, il sistema drena le acque superficiali provenienti dalla zona a Nord.

Un’altra concentrazione di fenomeni carsici ipogei è presente anche nei calcari cretacici che affiorano in corrispondenza del
bacino del Torrente La Foce. Qui si riconoscono una cinquantina di cavità, metà delle quali hanno andamento prevalentemente orizzontale con uno sviluppo massimo di 800 m rilevabile nell'Inghiottitoio dell'Arco Naturale (1249/538Fr) presso il paese di Mineres, che drena le acque di un piccolo ruscello che scorre sul Flysch. Da segnalare sono le cavità presso la Forra del Rio Molin a Nord dell'abitato di Mineres una delle quali, la Grotta 2ª nella Forra del Rio Molin (1142/525Fr), con carattere di risorgiva raggiunge uno sviluppo di 575 metri. Nonostante affiorino anche litologie caratterizzate da un buon grado di carsificabilità, sparse sono le conoscenze riguardanti il carsismo ipogeo del Monte Pafa. Merita, però, attenzione la Casa de Lis Aganis, risorgiva semiattiva che si sviluppa per oltre 500 metri nel Flysch di Cormons, caratterizzata da acque solforose note sin dal XV secolo. L'ingresso della cavità si apre sul versante meridionale di questo rilievo, poco sopra le sorgenti del Torrente Barquet presso Anduins.
Alta Val Cellina

L'Alta Val Cellina, escludendo il Massiccio del Cansiglio, rappresenta l'area maggiormente carsificata delle Prealpi Carniche occidentali. Il paesaggio carsico trova la sua massima espressione nella dorsale montuosa costituita dai monti Fratte (1983 m s.l.m.), Resettum (2067 m s.l.m.) e Raut (2024 m s.l.m.), che si estende a Sud dell'alto corso del Torrente Cellina. Fenomeni carsici si manifestano in maniera minore anche sull'elevazione culmi-
nante con il Monte Dosaip (2064 m s.l.m.), che rappresenta lo spartiacque tra il bacino del Torrente Cellina e l'Alto Meduna.

Geologicamente l'area è compresa tra due linee tetttoniche di importanza regionale (la Linea Pinedo – Avasinis a Nord e la Linea Barcis – Staro Selo e Sud) ed in parte attraversata dalla Linea della Val Silisia, faglia circa N-S che separa l'unità geologica alla quale appartiene il Monte Dosaip da quella dei monti Resettum e Raut. Le spinte compressive che hanno originato la catena alpina...
80
Modello tridimensionale geologico dell’area del Monte Resettum elaborato dalla Carta Geologica dei Friuli Venezia Giulia alla scala 1:190.000 di G.B. Carril. I puntini rossi rappresentano gli ingressi delle principali cavità catastate.

81
Sezione geologica interessante la monoclinale del Monte Resettum e la sinclinale strizzata e tagliata della Alta Val Cellina.

82
Esplorazioni speleologiche sul Monte Resettum (Foto U. Tagrett)

sono state in questa zona assorbite anche in maniera duttile con la genesi di diverse strutture plicative. La più importante è la sinclinale di Claut, il cui fianco meridionale è la monoclinale che costituisce la dorsale dei monti Resettum e Fratte.

Le rocce, essenzialmente dolomie e calcari, hanno un’età compresa tra il Carnico Superiore e l’Eocene. La Dolomia Principale è la formazione dominante in tutta l’area, mentre tra le rocce calcaree si distinguono per diffusione la Formazione di Soverzene, il Calcare dei Vajont, i Calcari Grigi dei Friuli ed il Calcare di Soccher.

Dal punto di vista geomorfologico l’area è “giovane” per la presenza di viali profonde dai fianchi decisamente acclivi. Interessante è la presenza di morfologie glaciali quali circhi e valli glaciali: ne sono esempio la Val de Gere, con la tipica sezione ad U, e il Cadin del Monte Dosaip, bellissimo esempio di circo glaciaire.

Dal punto di vista del paesaggio prettamente carsico, le forme più sviluppate si rinvengono nei Calcareri dei Vajont, soprattutto per la buona esposizione, la stratificazione massiccia e la fessurazione poco marcata. Queste rocce affiorano diffusamente lungo il versante settentrionale della dorsale Monte Fratte - Monte Resettum, ove, in particolare a quote comprese tra 1400 e 1900 m, il carismo superficiale presenta il suo massimo sviluppo. Sono presenti tutte le piccole forme, tra le quali spiccano estesi ed imponenti campi solcati, scannellature e solchi a doccia. Le numerose doline hanno tuttavia dimensioni limitate e non superano i 30 metri di diametro. Il carismo superficiale interessa, seppur con una minor ricchezza di forme, anche le pendici orientali del Monte Raut, dove affiorano i Calcareri Grigi dei Friuli, e nel Cadin del Monte Dosaip, dove è presente la Formazione di Soverzene. Al diffuso sviluppo delle forme carsiche in superficie corrisponde uno sviluppo dei fenomeni profondi di una certa entità: sono state esplorate oltre 100 cavità, ad andamento prevalentemente verticale, i cui ingressi si aprono solitamente alle quote più elevate. I pozzi rappresentano quasi il 70% delle cavità e la maggior parte di essi si apre nel Calcare dei Vajont: il solo Abisso del Monte Raut (693/339 Fr, profondità 149 m) supera i 100 metri di profondità e solamente 5 altre grotte sono profonde più di 50 m. Fra queste merita segnalare l’Abisso Primo del Monte Resettum (4416/2469 Fr, profondità 93 m) e l’Inghiottitorio di Cadin Dosaip (1628/634 Fr, profondità 67 m). Come in altre aree carsiche della Regione, gli ipogei più estesi sono localizzati...
a quote inferiori, spesso in prossimità delle zone sorgive dei sistemi carsici. In questo senso merita attenzione il Landri Scur (127/125Fr), il cui ampio ingresso si apre a Sud del Monte Resettum ad una quota di 1150 m s.l.m. Si tratta di una cavità ad andamento prevalentemente orizzontale che si sviluppa per 4322 metri nei Calcarì dei Vajont.

Questa grotta, caratterizzata dalla presenza di rami idrologicamente attivi, rappresenta il collettore idrico dell'area compresa tra i monti Fratte e Resettum: l'acqua drenata va in parte ad alimentare anche altre sorgenti poste nella fascia altimetrica sottostante. Un'altra cavità degna di nota è il Fontanin del Fratte (3896/2176Fr), che raggiunge uno sviluppo di 1012 m per un dislivello positivo di ben 396 metri. L'ingresso si apre alla quota di circa 1000 m s.l.m. a Sud del Monte Fratte e la cavità in occasione di intense precipitazioni drena una notevole quantità d'acqua, tanto che, a detta degli abitanti del luogo, il canalone nel quale la cavità si apre si è approfondito fino alle dimensioni attuali in una sola notte durante le alluvioni del 1966, tanta era l'acqua che usciva dall'imboccatura.
Il carsismo delle Alpi Carniche

Le Alpi Carniche sono la catena più settentrionale della Regione. Sono delimitate a Nord dalla Linea della Gail, che prende il nome dalla valle omonima e che si trova qualche chilometro a monte del confine con l’Austria, ad Est dalla Val Bordaia, a Sud dall’insieme di valli longitudinali che da Ovest ad Est si prolungano nella Val Calda attraverso la Val Pontaiba, la Val Pontebba e in parte, dalla Val Fella. Nell’area delle Alpi Carniche la cima più elevata è il Monte Coglians, vetta più alta della Regione, che raggiunge 2780 m s.l.m. Oltre ad esso, sono numerose le cime nella zona che superano i 2000 m s.l.m. e le più importanti da Ovest a Est sono: il Monte Fleons (2507 m s.l.m.), il Monte Volal (2554 m s.l.m.), il Monte Crottis (2250 m s.l.m.), Creta di Timau (2218 m s.l.m.), il Monte Zermula (2143 m s.l.m.), Creta di Alp (2279 m s.l.m.) ed il Monte Cavallo di Pontebba (2239 m s.l.m.).

Le Alpi Carniche racchiusono due zone intensamente carsificate, che corrispondono alle aree in cui affiorano i calcali devonici (Calcare massiccio del Monte Coglians e Calcari a Goniatiti e a Climenie), quella del Monte Coglians – Creta Timau e quella del Monte Zermula – Monte Cavallo.

In totale nelle Alpi Carniche sono state catastate 332 cavità.

Le Alpi Carniche, nella parte rappresentata dai terreni paleozoici, sono anche conosciute come Catena Paleocarnica, costituita da una delle successioni classiche del Paleozoico Europeo che ha mantenuto intatte le caratteristiche sedimentologiche ed il ricco contenuto in fossili. I terreni più antichi sono di età orдовica, ma non hanno un grande sviluppo e nemmeno una distribuzione omogenea. Importanti dai punto di vista areale e della carsificabilità sono, invece, la scogliera devonica ed i depositi carboniferi...
tici del Siluriano (Calcari ad Orthoceras). Si tratta dei calcari, depositatisi in ambienti di piattaforma e scarpata, che caratterizzano le cime più elevate delle Alpi Carniche. Nel Carbonifero, a seguito dell’attivarsi nella zona di una tettonica compressiva, si ha l’approfondimento dei mari e la deposizione sui calcari devonici del Flysch ercino rappresentato dalla Formazione del Hochwipfel e da quella del Dimon. Dal Carbonifero superiore si ha poi la deposizione di unità carbonatiche e terrigene, le prime dovute a momenti di innalzamento del livello marino, le seconde sono il risultato del disfacimento della Catena Paleoscarnica ad opera degli agenti esogeni.

Nel Permiano superiore si ha in seguito la deposizione delle rocce appartenenti alla Formazione a Bellerophon, costituita da gessi, dolomie e calcari, e di quelle della Formazione di Werfen. Per quanto riguarda il Mesozoico si hanno nella zona meridionale delle Alpi Carniche affioramenti di alcune unità depositatesi nel Triassico che, per quanto regarda il carsismo, non hanno importanza rilevante.

Dal punto di vista strutturale le Alpi Carniche sono costituite da un insieme di scaglie tettoniche impilate le une sulle altre, risultato delle due orogenesi che si sono verificate nella zona: quella ercinea (Devoniano superiore - Permiano) e quella alpina (Paleogene - Quaternario). Le due orogenesi si sono sviluppate in fasi e con direzioni dei campi di sforzi diverse, così generalmente le strutture più recenti obliterano e nascondono quelle più antiche.

La morfologia delle Alpi Carniche è contrassegnata dall’interazione di più fatti che ne hanno determinato l’evoluzione: in primo luogo la litologia e la tettonica, in secondo luogo il glaciale e il carsismo. È semplice distinguere gli affioramenti argillici del flysch ercino dalle zone costituite dai calcari della scogliera devonica. I primi sono di facile accesso, formano rilievi arrotondati e su di essi si sono impostati boschi e pascoli anche a quote elevate. I secondi si riconoscono per la loro asprezza, per la presenza di paretì lisce e strapiombanti e di cime prive di vegetazione.

Questa rilevo sono separati tra loro da importanti linee tettoniche e da lineamenti di fratture ad esse associate e riferibili sia all’orogenesi ercinea che a quella alpina. Molto spesso proprio lungo queste strutture si sono impostati i corsi d’acqua principali e alcuni dei loro affluenti minori: le faglie e le fratture importanti hanno influenzato in parte anche alcune morfologie carsiche profonde per quel che riguarda la direzione e la forma di sviluppo.
Un ruolo fondamentale nel modellamento del paesaggio l’ha avuto inoltre l’avvicendarsi, negli ultimi due milioni di anni, delle fasi glaciali ed interglaciali. Si possono osservare agevolmente solo gli effetti dell’ultima espansione glaciale, che ha rimosso tutte le forme lasciate dalle precedenti.

I passi ed i fondovalle testimoniano la presenza, nel passato geologico, di enormi masse di ghiaccio che hanno abraso e modellato i versanti con la tipica forma ad U nei fondovalle, lasciando piccoli archi morenici stadiali legati al progressivo ritiro dei ghiacci.

Numerose sono le aree carsiche comprese nelle Alpi Carniche.

Monte Coglians

Nell’area del Monte Coglians il carsismo superficiale si manifesta sotto forma di campi solcati, inghiottiti e doline anche di notevoli dimensioni. Assolutamente particolari i campi solcati detti "monumenz", nei dintorni della casera omonima. Per quanto riguarda il carsismo ipogeo si hanno nell’area una trentina di cavità che si aprono a Sud delle cime del M. Coglians, della Creta della Chianevate e della Cresta di Collinetta. La più importante di queste cavità è l’Abisso Marinelli (1314/550Fr) che raggiunge una profondità di 145 m e consiste in un’unica fessura allargata dal carsismo con inclinazione variabile dalla verticale a 50°.
Monte Pal Piccolo – Timau

La cima del Monte Pal Piccolo è un altipiano ove è presente gran parte delle manifestazioni carniche superficiali. Si hanno piccole valle chiuse, doline, inghiottiti e campi solcati con una discreta densità. Tra le doline ve ne sono una decina di notevoli dimensioni.

Per quel che riguarda il carisma ipogeo, l'area è quella a maggiore densità di grotte di tutte le Alpi Carniche. In una superficie di 1 km² si aprono 51 cavità. La maggior parte sono ad andamento suborizzontale, le altre hanno andamento misto. Parte delle acque che s'infiltrano attraverso queste cavità sembra siano drenate dal Fontanon di Timau (407/180Fr), risorgiva carica, che si trova ai piedi della parete meridionale del Gamspitz presso Timeu, attualmente utilizzata come presa dell'acquedotto locale.

Monte Zermula – Creta di Aip

Tra Plan di Zermula e Creta d'Aip sono osservabili numerose varietà di forme carniche epigee, con doline di varia forma e dimensione, con profondi solchi carsi di forma arrotondata (Rundkarren), imponenti crepacci carsi (Kluftkarren) e numerosissime scansellature.

Per quanto riguarda le forme ipogee sono presenti nella zona 33 cavità, prevalentemente di tipo misto, anche se frequentissimi sono i tratti subverticali. Fra le cavità la più interessante è l'Abisso Silvio Polidori (1047/478Fr), caratterizzato da gallerie suborizzontali nel tratto iniziale e da una serie di pozzi tutti praticamente subverticali; l'ingresso si apre a 1665 m s.l.m. e la cavità raggiunge i 192 metri di profondità.
Monte Cavallo

La zona del Monte Cavallo non è particolarmente ricca di forme epigee. Vi sono alcune doline di piccole dimensioni e di forma circolare che si aprono nel versante settentrionale del monte e alcune altre, poco più grandi, osservabili a Sud di Passo Pramollo. Nella parte sommitale del massiccio sono inoltre presenti interessanti crepacci carsici.

Per quanto riguarda le forme ipogee, sono presenti nella zona 31 cavità, concentrate attorno alla cima. Di queste, quattro sono le più importanti di tutte le Alpi Carniche, e tre di esse sono collegate e fanno parte quindi di un unico sistema.

Il sistema vede nell'Abisso Klondike (4234/2370Fr) la cavità più estesa: ha due ingressi, di cui uno in territorio austriaco, posti alla quota di circa 2130 m s.l.m. ed è costituito da due rami principali di tipo misto, cioè con gallerie suborizzontali e tratti a pozzo, per uno sviluppo totale di 3000 m.

È collegato tanto con l'Abisso della Kioce (4249/2385Fr), cavità con ingresso posto a 2000 m s.l.m., in cui predominano i tratti subverticali, quanto con l'Abisso Livio Pastore (4255/2391Fr), che si apre alla quota di 2115 m s.l.m. ed ha un andamento prevalentemente suborizzontale.

Vi è poi l'Abisso degli Incubi (4257/2393Fr): si apre alla quota di 2015 m s.l.m. presso la Creta di Rio Secco e consiste in una cavità a galleria con inclinazione da 30° a 50° per una lunghezza complessiva di 1500 m.

A pag. 76:
97 Pianta del complesso Klondike, Pastore, Kioce risaldata dai dati del Catasto Regionale delle Grotte
98 Pianta e spaccato dell'Abisso Poldoi risaldata dai dati del Catasto Regionale delle Grotte
99 L'ingresso della Grotta di Attia, inghiottitoio nel Plan di Lanza
(Poto G. Sardi)
Sorgente carisica nei gessi del Bellerophon
(versante settentrionale del M. Tersadia)

Spaccato del complesso klondike, Pastore,
Kloce riepilogato
dai dati del Catasto
Regionale delle Grotte
Entrata dell’Abisso
Grotte sul Col delle Erbe (Monte Canin)
(St. Archivio C. E. R.)
Il carsismo delle Alpi Giulie

Nelle Alpi Giulie, dove affiorano potenti successioni calcaree triassico-cretaciche molto carsificabili, si trovano alcune vaste aree carsiche eccezionali, fra cui quella del Monte Canin. Qui si rinvengono tutte le forme epigea di alta montagna, spesso esemplari, cui si accompagnano sistemi ipogei imponenti: 25 sono le cavità con più di 500 m di sviluppo e con più di 300 m di dislivello. Fra queste il Compresso carsico del Col delle Erbe, 7 ingressi per oltre 36,8 km di sviluppo, con decine di pozzi profondi che consentono di raggiungere i 935 m, e il Compresso del Foran del Muss. 24 ingressi per 15 km di sviluppo e 1110 m. È sul versante sloveno tuttavia che sono recentemente stati scoperti gli abissi più profondi: ben cinque superano i mille metri ed uno ha la verticale più lunga al mondo, 643 metri di pozzo unico!

Si tratta di un carsismo ipogeo molto sviluppato ma relativamente immaturo: rare le concrezioni, frequenti i crolli e le evidenze di movimenti recenti in cavità che alternano tratti impostati su falgi o fratture subverticali a tratti meandriformi o a condotta forzata. Difficili (e talvolta pericolose) sono le esplorazioni per le rigide temperature interne (fra 1°C e 2°C), gli angusti passaggi, lo sviluppo verticale dei vani, le piene improvvisi.

Le acque contenute nel Massiccio del Monte Canin trovano nella Dolomia Principale il livello semipermeabile di base e fuoriescono dal Fontanone di Gorluda e da alcune sorgenti minori nella Val Raccolana, nella valle del Rio del Lago (verso il bacino del Danubio!) ed, in gran parte, sul versante orientale sloveno in destra Isonzo.
Il Massiccio del Monte Canin (2587 m s.l.m.) si trova a cavallo del Confluenze di Stato italo-sloveno, nel cuore delle Alpi Giulie occidentali. È delimitato a Nord dalle valli Raccollana e Rio del Lago (separate dall’abitato di Sella Nevea), ad Est dalla Val Mogenza, a Sud dalle valli dell’Isonzo e Resia e ad Ovest nuovamente dalla Val Resia. Con la sua mole ed i vasti altopiani dei versanti meridionali è ben visibile da molti punti della pianura isontino - friulana, ed anche da molte zone costiere e del Carso. Gran parte dell’area Nord Ovest del massiccio fa parte del Parco delle Prealpi Giulie, istituito con la Legge Regionale n° 42 del 30 settembre 1996.

L’intero gruppo del Canin costituisce un esempio di carso alpino tra i più spettacolari in Italia, sia per la ricchezza e varietà di forme epigee, sia per la morfologia ed estensione degli abissi che lo percorrono al suo interno. Su un’estensione di 180 km² divisa tra Italia e Slovenia si riconoscono migliaia di grotte (2031 solo in Italia): si tratta di numeri importanti anche rispetto ad altre aree carsiche nel mondo. Ciò che tuttavia lo rende un sito unico sono i circa 130 km di reticoli carsici attualmente esplorati con numerose cavità più profonde di 1000 metri. Le particolarità del paesaggio rende maggiormente ammirabili tutte queste caratteristiche, date le vaste esposizioni delle aree in affioramento degli altopiani, che manifestano un continuo alternarsi di micro e macro-forme carsiche. In un paesaggio roso lunare dalla scarsa copertura vegetativa, al margine di affioramenti rocciosi finemente lavorati (frequentissimi solchi, scannellature e crepacci carsici) si aprono ingressi di cavità, inghiottiti e doline delle dimensioni più svariate.

Anche dal punto di vista prettamente geologico-stratigrafico l’area riveste una certa importanza per la possibilità di osservare con continuità le successioni di piattaforma triassiche e giurassiche.
Il Massiccio del Monte Canin è infatti in gran parte costituito dalla successione norico-retica di piattaforma carbonatica rappresentata dalle formazioni della Dolomia Principale e del Calcare del Dachstein.

La Dolomia Principale (di età Norico) affiora con continuous alle quote più basse del versante settentrionale ed in alcuni lembi del versante meridionale, con discontinuità alla base del lembo sovrascorso lungo la linea del Monte Canin (alto versante settentrionale del massiccio). Affiora anche nei versanti vallivi che incidono la parte sud-orientale del massiccio (Val Mogenza in Slovenia) e si presenta nella sua facies classica costituita da cicli asimmetrici di deposizione in ambiente peritidale di spessore variabile da 1,5 a 3 metri o a stratificazione talora indistinta. La potenza si aggira attorno agli 800-1000 m. La Dolomia Principale costituisce lo zoccolo, seppur discontinuo e dislocato, sul quale poggiino i Calcarri del Dachstein ed influisce direttamente nella formazione di alcuni limiti idrogeologici sipermeabili e sulla speleogenesi di alcune cavità.

Il Calcare del Dachstein è la roccia che caratterizza la quasi totalità del massiccio ed in cui si sviluppano i più imponenti fenomeni carsici ipogei. È potente intorno ai 700-800 metri e può essere ulteriormente suddiviso in un’associazione più francamente calcarea (parte superiore della formazione) e in una calcarea dolomitica (parte inferiore), il che porta ad una diversificazione delle morfologie ipogee. Si presenta in bancate nette dallo spessore di 1-2 metri e macroscopicamente appare di colore bianco o grigio chiaro, a grana fine ed aspetto molto compatto. Particolarmente colpo d’occhio hanno alcuni affioramenti formati da straordinari accumuli di grandi conchiglie di Megalodonti, i macrofossili che caratterizzano questa formazione, riconoscibili per la tipica sezione cuoriforme. Questi accumuli di resti con spessori anche di alcuni metri sono ben visibili all’esterno (ad esempio nelle vicinanze del Rifugio Gilberti, a lato della pista che scende verso Conca Prevala), ma ancora di più nei tratti ipogei, a causa della corrosione differenziata (ad esempio nell’Abisso Capitan Findus – 5574/3138Fr – alla quota interna di 1650 metri s.l.m.).
Nella fascia dell’altopiano nord-occidentale e nell’area a Sud dei Monte Poviz affiorano in continuità stratigrafica con i Calcare del Dachstein iemi limitatamente estesi e poco potenti (potenza massima della serie 140 m) di calcari giurassici. La successione dell’area Nord Ovest è poi continua fino alla Scaglia Rossa cretacea, riunita in una serie particolarmente condensata. Proprio la presenza di Scaglia Rossa conferisce il colore rossaastro ai terreni nei dintorni di Forca di Terra Rossa, tra il Monte Sart ed il Monte Canin.

Da un punto di vista strutturale il Monte Canin è costituito da un’originaria anticlinale faglgiata secondo un piano principale Nord vergente orientato Est - Ovest, che corre immediatamente a Nord della linea di cresta (Linea del Monte Canin), che porta in contatto tettonico la Dolomia Principale con il Calcare del Dachstein. Si tratta di un piano di retroscorrimento riconducibile ad una serie di faglie regionali Sud vergenti poste ai piedi del versante meridionale del massiccio. Il gruppo montuoso si trova così scomposto in due subunità strutturali distinte, formanti due motivi monoclinali a giacitura opposta e talvolta interessati localmente, nelle zone di maggior disturbo tettonico, da strette piegle anticlinali e sinnclinali. Quella settentrionale (gran parte del versante italiano) si immerge verso Nord, quella meridionale (alto versante settentrionale italiano e versante orientale sloveno) si immerge verso Sud. La “Linea del M. Canin” e quelle ad essa subparallele sono state in parte riprese da movimenti trascorrenti o dislocate da piani ad andamento Nord Ovest – Sud Est e ONO-ESE (normalmente a carattere trascorrente destro) e Nord - Sud, con giacitura spesso verticale o sub-verticale. Il Massiccio del Monte Canin risulta così suddiviso da queste importanti discontinuità che isolano estesi blocchi tettonici. Le faglie minori, le fratture e la stratificazione, hanno favorito lo sviluppo dei reticoli carsici all’interno dei singoli blocchi che, da un punto di vista idrogeologico, costituiscono delle unità semi indipendenti: non esistono, infatti, al momento, collegamenti percorribili tra varni ipoegi sviluppati in blocchi diversi, che sono anche caratterizzati dalla presenza di livelli di gallerie freatiche a quote diverse. Nella maggior parte dei casi i blocchi sono limitati alla base, da un punto di vista idrogeologico, dalla Dolomia Principale, che contribuisce alla formazione di una soglia di permeabilità indefinita dell’acquifero carsico.

Le forme carsiche epigee trovano particolare diffusione nei movimentati pianori
111-112
Planta e sezione dell'Abisso Gortani ridisegnati dai dati del Catasto Regionale delle Grotte

113
Planta e sezione dell'Abisso Led Zeppelin ridisegnati dai dati del Catasto Regionale delle Grotte

Il paesaggio più frequente è caratterizzato da rocce montonate esposte ad intensa corrosione: prevalgono i solchi lunga la massima pendenza dei piani di strato là dove le bancate sono più potenti e poco suddivise, sono numerosi e profondi i crepacci là dove la fratturazione ha favorito la penetrazione in profondità del carsismo. Scannellature e vaschette conferiscono poi alle superfici esposte una particolare suggestione. Tra i più bei esempi si segnala la serie di solchi a doccia sulle inclinate bancate di calcare poco sotto alla sella del Monte Poviz, a ridosso delle pareti Ovest dell'omonimo monte (segnavia 636 m), ed in generale i karren di tutta la vasta area a conca stretta tra la base dei pendii del Monte Canin, il Col delle Erbe ed il Foran del Muss: la giacitura della stratificazione, che passa da orizzontale a poco inclinata, alterna bancate perfettamente piatte ad altre finemente lavorate dalla corrosione, specialmente in corrispondenza dei calcari olistici ed a crinoidi giurassici.

Tra le macroforme epigee le morfologie che imprimono al paesaggio un aspetto caratteristico sono i pozzi a neve e le doline, che con la loro densità rendono complicata anche la percorrenza degli altopiani ai di fuori della sentieristica. Le doline qui hanno spesso fianchi molto accvii o verticali, sia che si tratti geneticamente di doline di crollo sia che siano classiche doline di dissoluzione, generate all'incrocio di discontinuità tettoniche importanti ed evolute con crolli e ribaltamenti successivi che hanno contribuito a verticalizzare i fianchi. Spesso nelle doline maggiori e più profonde permangono depositi di neve per tutta l'estate. Forme particolari di doline sono le cosiddette doline di suffusione, che
si sono generate nei depositi quaternari sciolti di copertura delle zone subpianeggianti.

I pozzi a neve sono la morfologia più frequente ed hanno la particolarità di avere una sezione circolare con diametro di qualche metro e profondità in genere di qualche decina di metri. Non mancano infine le classiche forme glaciocarsiche: conche glaciocarsiche, la maggiore delle quali è rappresentata dalla conca del Prevala, rocce montonate e rilievi di grandi dimensioni, dalla forma allungata nel senso della massima pendenza della superficie con fianchi lisciati, che sul versante sloveno prendono il nome di “skedenj”. Quest’ultimi derivano dallo scorrimento laterale delle antiche masse ghiacciali, che ricoprivano solo parzialmente gli originari alti strutturali.

La gran parte di queste forme è ben rappresentata, nell’ambito della conca, dall’Abisso Boegan (1361/555Fr, profondo 624 metri) ubicato al piede del Col delle Erbe, uno dei primi abissi esplorati negli anni ’60, con un pozzo d’accesso ben visibile da molti punti dell’altopiano che, durante i periodi di precipitazioni intense, inghiotte un vero e proprio ruscello.

Il carsismo ipogeo è caratterizzato da cavità a sviluppo prevalentemente verticale con abissi fra i più profondi del mondo. Ben due sono i complessi con uno sviluppo sotterraneo di gallerie e pozzi prossimo al 20 chilometri (Complesso del Col delle Erbe e Complesso del Foran del Mass), sei sono al momento i -1000, cioè le cavità più profonde di 1000 metri. A grandi linee la formazione dei Calcari del Dachstein risulta essere l’entità più intensamente carsificata, mentre la Dolomia Principale costituisce un livello poco permeabile di base anche se al suo tetto in alcuni casi si sono formati livelli di gallerie freatiche molto sviluppate.

Le cavità del Monte Canin presentano le morfologie classiche degli abissi d’alta montagna, caratterizzate principalmente dalla presenza di forme vadose (pozzi cascata e forre strutturali) che intercettano dei sistemi suborizzontali relitti o attivi (gallerie freatiche singenetiche, con sezione circolare o elissoidale). Morfologie più rare, ma spesso di enormi dimensioni, sono le cavero di crollo, come ad esempio la Sala delle Meteore nell’abisso Nat 10 (5577/3141Fr) sotto l’altopiano di Pala Ciar. Tra le più belle forre sotterranee si segnala, invece, il “Meandro da un km” al fondo dell’Abisso Michele Gortani (1487/585Fr, Col delle Erbe).

Il condizionamento strutturale nella genesi di queste morfologie è evidente: i grandi pozzi si sono formati in corrispondenza di discontinuità verticali (in genere una o due), le cavero di crollo all’incrocio di più discontinuità importanti, i tratti orizzontali, in partico-
lare le antiche gallerie freatiche, sono invece guidati più dalla stratificazione che dal sistema fessurativo. Caratteristica è la coesistenza alle stesse quote di morfologie freatiche e vadose, indizio che gli ambienti ipogei non hanno avuto genesi unica e consequenziale, ma sono il risultato di più fasi evolutive e dei succedersi di condizioni idrogeologiche diverse. Questa particolare situazione si riscontra nell’area Nord Ovest del massiccio (Col delle Erbe e Foran del Muss), in cui l’intricato sistema di reticolari carsici potrebbe in un futuro diventare uno dei complessi ipogei più estesi d’Italia.

Da queste premesse si capisce come le situazioni strutturali, litologiche e morfologiche e la loro variabilità nello spazio e nel tempo abbiano controllato la differenziazione delle morfologie ipogee e la loro distribuzione. In particolare, per quanto riguarda i condizionamenti morfologici, bisogna pensare che il drenaggio sotterraneo avviene (ed avveniva) verso quattro sistemi vallivi distinti, con quote dei fondovalle, aree sorgive ed evoluzione degli stessi diverse tra loro.

Proprio i reticoli carsici dell’area Nord Ovest sono ad esempio gli antichi testimoni dell’espansione del bacino del Fiume Fella e dei conseguente spostamento verso Est dello spartiacque fra Mare Adriatico e Mar Nero: la formazione delle gallerie freatiche di questa area, infatti, è avvenuta almeno 100.000 anni fa, periodo in cui le acque di tale zona del Monte Canin venivano drenate verso Est, cioè verso il bacino del Mar Nero. Oggi le acque si scaricano nel bacino del Torrente Raccanella - Fiume Fella attraverso il Fontanon di Goruida (20/1Fr), che rappresenta la sorgente carsica più importante del versante settentrionale del Monte Canin.

Per quanto riguarda l’idrogeologia al contorno del M. Canin, tra Italia e Slovenia, si contano nove sorgenti a carattere perenne ed una serie di sorgenti temporanee associate che hanno una funzione di troppo pieno. Alcune sono identificate in cavità ben precise (come nel caso del Fontanon di Goruida), altre non sono ben definibili in quanto nei periodi più piovosi costituiscono una fascia sorgiva vera e propria dove l’acqua esce da fratture beanti o da interstati. Alcune di queste risultano sfruttate sia a scopo idropotabile sia idroelettrico e costituiscono una risorsa importante per l’area.

Nel versante italiano le più importanti sono il già citato Fontanon di Goruida, rappresentato da una spettacolare bocca sospesa sul fondovalle e da dove le acque si gettano in una serie di cascate per un centinaio di metri di dislivello. Altre sorgenti importanti del versante italiano sono quelle del Rio del Lago, situate ad Est dell’abitato di Sella Nevea, le quali drenano le acque verso il bacino dello Stizza e sono sfruttate a scopo idropotabile.
Solchi carsicì impestati lungo la parete di un profondo crepaccio carsoio (M. Canin)
(Foto G. Castagna)
Il carsismo delle Prealpi Giulie

Le Prealpi Giulie sono formate dai primi rilievi collinari e montuosi a NE di Udine e sono comprese tra la Pianura Friulana, l’Isonzo, la Val Resia, il Fella e il Tagliamento. L’area è costituita da rocce carbonatiche mesozoiche di piattaforma, scarpata e bacino, da un’estesa e potente successione torbiditica maastrichtiana - cocenica (4000 m di spessore) e da depositi quaternari di varia origine. Tutta la zona è caratterizzata da numerosi sovrascorrimenti di origine alpina, alcuni dei quali di importanza regionale, come la Linea M. Dof – M. Audà / M. San Simeone – Saga, la Linea Pinedo – Uccea e la Linea Barcis – Staro Selo, con un fronte di 70 chilometri di lunghezza, che porta la Dolomia Principale a sovrascorrere sul flysch arenaceo marnoso, segnando il confine tra rocce carbonatiche a Nord e depositi torbiditici a Sud.

La presenza di rocce così differenti per permeabilità e risposta al fenomeno carsico determina una accentuata diversificazione del paesaggio e delle caratteristiche carsiche ipogee delle Prealpi Giulie, che trova nella vicinanza dei contrasti motivo di notevole valore naturalistico e paesaggistico. Accanto al tipico paesaggio carsico, caratterizzato dall’assenza di un reticolo idrografico superficiale, da altiplani crivellati da doline, da estesi campi solcati e da profondi abissi, si elevano rilievi collinari incisi da numerosi torrenti e ruscelli, coperti da una vegetazione rigogliosa, dove si sviluppano complessi ipogei di notevole estensione e varietà morfologica degli ambienti.

La zona è caratterizzata da un carsismo ipogeo particolarmente sviluppato: vi si aprono 1051 cavità, la maggior parte delle quali si sviluppa nelle bancate carbonatiche dei flysch, anche se la densità di ingressi più elevata si ha nella catena calcarea del Monte Musi con punte di più di 150 grotte per km².

Nelle Prealpi Giulie sono note 65 cavità con sviluppo maggiore di 100 m e ben 9 che superano i 1000 m; la grotta di maggior estensione è la Grotta Nuova di Villanova (939/323Fr) con 8020 m di sviluppo planimetrico. Nell’area le grotte attive, cioè quelle che ospitano un corso d’acqua, sono più di 150 e di esse ben 65 fungono da risorgive o da inghiottitori. Le
cavità che superano i 100 m di profondità sono invece poche, appena 14, probabilmente a causa della limitata estensione e potenza delle rocce calcaree. Gli abissi più profondi, come l'Abisso Pahor (5101/2830Fr) il più importante della zona che raggiunge i –485 m, si sviluppano infatti nei calcari di piattaforma.

Monte Musi

La catena montuosa delle Cime del Monte Musi si trova nella parte più settentrionale delle Prealpi Giulie occidentali e si sviluppa in direzione E-W tra i rii Uccea e Barman a Nord, ed i rii Vodizza e Mea a Sud. È una cresta montuosa formata da numerose cime attorno ai 1800 m s.l.m., tra cui il Monte Musi con 1869 m.

La zona presenta la maggiore piuviosità non solo regionale ma addirittura nazionale, con oltre 3000 mm di precipitazione annui e picchi che possono raggiungere i 5000 mm/anno.

Si tratta di una monocline con immersione degli strati verso Nord; il versante meridionale della catena è interamente formato da Dolomia Principale su cui poggia la facies del Calcare del Dachstein (a sua volta a facies mista) che forma la zona di cresta. Il versante settentrionale a franagio è quasi completamente costituito dai Calcari Grigi giurassici che, alla base del versante, scorrono su se stessi e verso Est sul Flysch di Uccea.

La catena del Musi è compresa tra il sovrascorrimiento “Monto San Simeone – Cia- pon del Mai – Val Uccea ” (Linea di Uccea) a Nord e il sovrascorrimiento “Monte Brancat – Caporetto – Circhina” (Linea del Brancot) a Sud, quasi completamente coperto da detriti di falda e depositi fluvio-glaciali d'età
pleistocenici che riempiono il fondo della Valle di Musi. Si rinviene inoltre delle morene stadalì sul versante Nord nei pressi di Sant’Anna originate da una lingua glaciale proveniente dal Monte Zalavor, delle morene würmiane presso Lischiazzo, depositate dalla lingua glaciale della valle del Rio Barman e presso Tanataviele lungo il versante meridionale della catena.

La giacitura a franapoggo dei calcari triassici e giurassici che caratterizza il versante settentrionale dei Musi favorisce la formazione di un ricco ed articolato sistema di forme carsiche di scorrimento, tipico di ambienti carsici d’alta montagna. In base all’inclinazione dei pendii è possibile, infatti, ammirare solchi in parete (Wandkarren) di diverse decine di metri di lunghezza che incidono quelle più verticali immediatamente sotto la cresta dei Musi; dove la pendenza inizia a diminuire, gli strati carbonatici sono caratterizzati da solchi a doccia (Rinnenkarren), che sono le morfologie nettemente prevalenti nell’area, molto spesso interrotti da crepacci carsici (Kluftkarren) e particolarmente presenti su pendii con inclinazione inferiore ai 40°. A causa della limitata estensione di superfici rocciose poco inclinate o suborizzontali, le scannellature (Rillenkaren) e soprattutto le vaschette di corrosione (kamenitze) sono forme molto rare. Inoltre sono del tutto assenti le doline, morfologie tipiche dei paesaggi carsici d’altopiano. L’accentuata accività dei versanti, infatti, favorisce il rapido drenaggio delle acque meteoriche verso valle o in profondità attraverso i numerosi crepacci carsici che incidono quasi ovunque gli affioramenti con pendenza moderata. Inoltre, data la giacitura e le caratteristiche strutturali dell’area, i versanti subiscono una modifica relativamente veloce ad opera di fenomeni franosi di scivolamento lungo le discontinuità parallele ai versanti.

Sulla catena dei Musi si aprono più di 220 cavità, di cui l’80% presenta profondità e sviluppo inferiore a 30 m; i complessi ipogei più importanti sono: l’Abisso Roberto Pahor (5101/2830Fr, profondità 485 m, sviluppo 1092 m), la Grotta dell’Uragano (1315/556Fr, profondità 126 m, sviluppo 870 m), l’Abisso dei Ribelli (5464/3028Fr, profondità 256 m, sviluppo 495 m) e l’Abisso dei Diedri (5694/3206Fr, profondità 179
m, sviluppo 290 m). La maggior parte degli ingressi si apre nei Calcari Grigi giurassici del “Circo del Musi”, grossomodo tra i 1400 e 1700 m s.l.m., con una densità che supera le 100 cavità per km²; la Grotta dell’Uragano e altre risorgive carsiche di questo versante si sviluppano invece più ad occidente nei pressi del canalone del Rio Barman.

Dal punto di vista morfologico, prevalgono nettamente le cavità ad andamento verticale di origine principalmente vadosa per percolazione lungo le discontinuità maggiormente drenanti, ma sono facilmente individuabili anche forme direttamente collegabili alla fase freatica di formazione dei vani, come condotte freetriche, nonostante spesso si presentino ormai modificate da successivi approfondimenti a forra o da crolli imponenti. In generale comunque si assiste ad una diffusa ed abbondante circolazione idrica ipogea, principalmente di percolazione dell’esterno, tanto che i depositi calcitici sono quasi del tutto assenti.

Sono rari anche i depositi di sedimenti, la maggior parte delle volte si tratta di fanghi bruno-neastri (forse suoli superficiali trasportati in profondità), oppure sedimenti fini o meno compattniti provenienti dalla disgregazione delle rocce carbonatiche calcaree e dolomitiche sovrastanti. In diverse cavità si rinvengono invece depositi di “latte di monte” (modnimlich), che sembra si formi in ambienti iperumidi per disgregazione biochimica del carbonato di calcio ad opera di microrganismi. In seguito ad un tracciamento delle acque del fondo dell’Abisso Pahor effettuato nel settembre del 1997 e al monitoraggio delle caratteristiche chimico – fisiche delle sorgenti della catena, risulta che l’idrostruttura della catena del Musi è caratterizzata da un rapido drenaggio delle acque in profondità attraverso le discontinuità più incisitc e beanti fino alla zona satura con un comportamento idraulico tipico nei carsi d’alta quota. Da qui le acque vengono drenate soprattutto verso Sud e SO e fuoriescono dalle sorgenti localizzate alla base del versante meridionale della catena, andando ad alimentare principalmente le Sorgenti del Torre, che rappresentano lo sbocco principale dell’accufero delle Cime del Monte Musi. Parte delle acque viene drenata anche dalle risorgive carsiche che si aprono nel canalone del Rio Barman.

sul versante settentrionale, principalmente del Fontanon del Berman (7/37Fr) che con una portata massima stimata di 1,5 m³/s rappresenta una delle più importanti sorgenti carsiche delle Alpi e Prealpi Giulie. Secondo diversi studi effettuati in zona lo spaltiaco sotterraneo dell’accufero del Musi dovrebbe migrare in funzione del carico idraulico verso Sud in regime di magra e verso Nord in piena, a causa della migliore trasmissività per carsismo del versante settentrionale. La maggiore permeabilità, però, è anche responsabile di un minor immagazzinamento delle acque in questa parte della catena, con un conseguente rapido esaurimento in condizioni di magra a favore delle sorgenti del versante meridionale.

Monti La Bernadia e dintorni

Si tratta dei primi rilievi montuosi compresi tra i 600 e i 900 metri tra Tarcento e Montaperta, alle pendici del Gran Monte e grossomodo limitati ad Ovest dal Torrente Torre e a Est dal Cornappo. Le precipitazioni sono piuttosto elevate, comprese tra i 2000 mm/anno per le zone prossime alla pianura ed i 2500 per la zona di Montaperta più vicina al Musi (massimo italiano). Le temperature medie annuali sono comprese tra 9° e 10°C. Il massiccio dei Monti La Bernadia è costituito da calcari giurassici e cretacici di piattaforma (Calcari del Cellina e Calcari del Monte Cavallo) e da depositi torbiditici ascrivibili al Flysch del Grivò. Numerose cavità si svilup-

124 Crepacci carsici e solchi su un piano di strato molto inclinato del versante settentrionale del M. Musi
(Piero F. Premiani)

125 Pianta e spaccato della Grotta Pahor risidenzati dai dati del Catasto Regionale delle Grotte

125 Parete sul versante settentrionale del M. Musi interessata da numerosi solchi e profondi crepacci carsici con frequenti fori di dissoluzione
(Piero F. Premiani)
pano anche all'interno di questa successione teoricamente "non carsificabile", in quanto formata oltre che da termini terrigeni anche da depositi carbonatici, quali megabanchi carbonatici di notevole spessore, paraconglomerati, breccie e calcareniti. Dal punto di vista strutturale La Bernadia è una piega coricata con vergenza verso Sud Ovest, compresa tra due sovrascorrimenti: la Linea Barcis-Staro Selo a Nord e la Linea del Bernadia a Sud. I diversi litotipi affioranti nell'area del Bernadia determinano una spiccata differenziazione del paesaggio a seconda della carsificabilità dell'ammasso roccioso. La parte meridionale del massiccio, costituita dai calcari mesozoici, presenta il tipico paesaggio carsico con numerose doline e campi solcati, caratterizzato dall'assenza di un reticolato idrografico superficiale. Nella parte settentrionale, invece, i depositi terreni impermeabili favoriscono lo scorrimento superficiale delle acque meteoriche in impluvì che incidono e modellano i
versanti del Bernadìa. Quasi del tutto assenti le forme carsiche superficiali e ridotte ai poco estesi affioramenti carbonatici; diffuse le delinee di subsidenza, originate per il cedimento degli strati manioso-arenacei dovuti alla dissoluzione dei calcai sottostanti.

Nella zona si aprono più di 140 grotte, che si distribuiscono abbastanza uniformemente indipendentemente dalla natura geologica del substrato, anche se la densità maggiore si ha nelle facies carbonatiche di piattaforma (quasi 20 ingressi per km²). Sembra inoltre che il litotipo non influenzi nemmeno la tipologia generale delle cavità: grotte verticali, orizzontali e complesse, infatti, si sviluppano nelle rocce carbonatiche sia mesozoiche sia ecoceniche. Le differenze più importanti ed evidenti si hanno, invece, nelle morfologie dei singoli vani delle cavità che si sviluppano nel Flysch: le grotte in questo deposito presentano le tipiche morfologie carsiche ipogee, sia primarie, sia secondarie, come ad esempio condotte singenetiche successivamente approfondite a forza, quali quelle facilmente riconoscibili nella Grotta Doviza (13/70Fr). Le cavità, invece, che si sviluppano in parte nei calcari ed in parte nelle rocce terriginne presentano morfologie ipogee del tutto particolari: si possono percorre tratti meandriformi scavati nelle calcareniti sovrapposti e/o alternati a gallerie erose ed incise nei livelli silicoclastici, come avviene nella Grotta Nuova di Villanova (939/323Fr).

La maggior parte delle cavità della zona presenta profondità e sviluppo che non superano i 20 m e solo cinque hanno una profondità maggiore di 100 m; sono però presenti numerose cavità con sviluppo rilevante (maggiore di 100 m) e complessi ipogei di notevole estensione, il più importante è senz’altro la Grotta Nuova di Villanova con 8020 m di sviluppo e 281 di profondità. La cavità venne scoperta nel primo dopoguerra (intorno al 1925) e già nel giro di pochi mesi raggiunse i 300 metri di sviluppo; le esplorazioni ripresero subito dopo la seconda guerra mondiale e nel 1954 la cavità raggiunse i 3700 m di sviluppo. Oggi supera i 10 chilometri, grazie alle collaborazione nelle faticose esplorazioni tra gli speleologi friulani e quelli triestini. La scoperta aveva acceso grande entusiasmo nei paesani per uno sviluppo speleo – turistico della zona, tanto che il paese cambiò nome da Villanova in Monti a Villanova delle Grotte. Le visite sono iniziato già nel 1926.

Poco distante si aprono altre due cavità importanti: la Grotta Doviza e la Grotta Feruglio (3895/2175Fr). Le prime esplorazioni nella Doviza risalgono già alla fine dell’800: i primi del ‘900 il neo fondato Circolo Speleologico e Idrologico Friulano (CSIF) esplorò 2941 m di gallerie. Attualmente la grotta
raggiunge quasi i 5500 m di sviluppo e 100 di profondità. La Grotta Feruglio è stata scoperta nel 1982 dall'Associazione Friulana Ricerche di Tarcento: si trova tra la Nuova di Villanova e la Doviza e raggiunge i 5520 metri di sviluppo e i 150 metri di profondità.

Presso l'abitato Borgo Vigant, a poco più di un chilometro dalla Doviza, si trova il complesso Viganti – Pre-Oreak. L'Abisso Vigant (o Grotta dei Viganti, 110/66Fr) venne scoperto ed esplorato per pochi metri già alla fine dell’800, sia per la vicinanza al paese, sia per le dimensioni del grande portale d’accesso. Dalla scoperta dell’abisso ci vollero più di 50 anni (dalla fine ‘800 al 1949) per riuscire a scendere il pozzo di 80 metri che si trova a – 30: si tratta di un inghiottitore attivo nei periodi di piena, in cui si perdono le acque del Rio Tanaloha, che alla profondità di 250 m circa, attraverso un sifone di quasi 40 m, raggiunge la Grotta Pre-Oreak (176/65Fr), da cui fuoriesce in caso di piene eccezionali, gettandosi nel Cornappo. Il sifone fu superato solamente nel 1965, confermando il collegamento tra le due cavità. Il complesso oggi supera 1800 metri di sviluppo e 250 metri di profondità. Attualmente quindi la zona Bernadia – Villanova è caratterizzata da
un complesso reticolo ipogeico che raggiunge quasi 16 chilometri di sviluppo complessivo. Altre aree carische importanti nella zona sono l’altopiano di Montegrado ed i dintorni di Montesperta. Nell’area caristica di Montegrado si aprono più di venti cavità, ad andamento sia orizzontale sia verticale, delle quali la più interessante è la Buse da l’Ors (255/64Fr), una risorgiva di una cinquantina di metri che si apre circa 10 m sopra l’alveo del Cornappo. La grotta Pod Lainse (1456/573Fr) è a sua volta la cavità senz’altro più importante della zona di Montesperta: si tratta di una risorgiva perenne che si sviluppa interamente in un bancone carbonatico del Flysch di Grivò per quasi 1500 m.

Valli del Natisone

Quest’area delle Prealpi Giulie viene generalmente chiamata "Valli del Natisone" in quanto appartiene al Bacino del Fiume Natisone: si tratta dei rilievi che si innalzano alle spalle di Cividale del Friuli, fino al confine con la Slovenia a Nord e alla valle dello Judrio ad Est. I rilievi principali sono il M. Mia (1245 m s.l.m.) e il M. Matajur (1961 m s.l.m.). Le Valli del Natisone presentano affioramenti di età compresa tra il Norico e l’Eocene inferiore (220 – 50 milioni di anni fa), oltre a potenti depositi quaternari. In particolare la parte settentrionale dell'area è caratterizzata da calcari di piattaforma e di scogliera (dal Norico al Seroniano inf.) che vanno a costituire il rilievo del Monte Mia ed i versanti Nord occidentali del Monte Matajur, mentre la maggior parte della zona è formata da potenti depositi torbiditici arenaceo – marnosi e carbonatici. Del punto di vista strutturale la zona è caratterizzata da una serie di sovraccorrimeni ad andamento Nord Ovest – Sud Est, che provocano notevoli raccorciamenti dei depositi torbiditici, e dall’anticlinal del gruppo Monte Mia – Monte Matajur.

Fenomeni di carisma superficiali non sono molto diffusi nella zona delle Valli del Natisone, il Flysch copre infatti quasi l’80% della superficie della zona ed il 15% è costituito da depositi quaternari. Solo sui rilievi del Monte Vogu e del Monte Mia oltre che in alcune aree del Monte Matajur, è possibile ammirare il tipico paesaggio carso, caratterizzato da assenza di un reticolo idrografico...
136 Campi solcati sul Monte Glava-Maljur
(Foto A. Bianzzi)

137 L'ingresso della Grotta di San Giovanni d'Antro, dedicato al culto
(Foto G. Esposito)
superficiale, estesi campi solcati e altopiani con numerose doline. Nella maggior parte delle Valli del Natisone invece prevale una diffusa ed articolata rete idrografica superficiale, con fenomeni di erosione differenziale in base alla natura carbonatica o terrigena della successione torbidica.

Nelle Valli del Natisone sono presenti più di 380 cavità, di cui quasi il 90% si sviluppano nella successione torbidica ed in particolare nel Flysch del Grivò, caratterizzato da depositi carbonatici molto potenti. Quasi il 50% delle cavità è ad andamento verticale, ma solo una supera i 100 m di profondità: l'Abisso a Sud Ovest del Monte Matajur (893/389Fr), che raggiunge 175 metri di profondità e 405 metri di sviluppo. Le cavità ad andamento orizzontale sono comunque molto numerose (più del 30%) e quasi 30 di queste hanno uno sviluppo maggiore di 100 metri. La cavità più importante della zona è senz'altro la Grotta di San Giovanni d'Antro (4/43Fr). Questa si apre a 350 m s.l.m nella parte più meridionale delle Valli del Natisone, ad una decina di chilometri a Nord di Clivada, nei pressi di Antro, sul versante orografico destro del fiume Natisone. Si tratta di una cavità prevalentemente orizzontale, in leggera salita, che si sviluppa per 4500 m all'interno di un megalano carbonatico del Flysch del Grivò con un dislivello complessivo di quasi 100 metri. È accessibile al pubblico per i primi 300 metri circa.

Un'altra cavità di estensione notevole è la Grotta Risorgiva di Star Cedat (1076/483Fr), una risorgiva perenne che si aprì circa 2 chilometri a Sud di S. Leonardo nell'impiuvelo del Torrente Postarimedio; ha uno sviluppo di 1200 m con un andamento suborizzontale e presenta un dislivello complessivo di 60 m; è caratterizzata da una notevole varietà di ambienti e da morfologie ipogee particolari dettate dai diversi litotipi in cui si sviluppa, quali marne, arenarie e banconi carbonatici. La cavità è inoltre impreziosita da numerose e spettacolari concrezioni calciteche, quali stalattiti, stalagmiti e coleste, anche se non mancano le "concrezioni di fango" rinvenibili in particolare nelle grotte in flysch.
Il Carso Classico

L'area del Carso (Carso sloveno, triestino ed isontino) è l'area carsica per eccellenza, ove affiorano calcari molto carsificabili che danno luogo a tutte le forme carsiche epigee e ipogee possibili, sempre con densità, ampiezza e tipologia tali da aver fatto dell'area il simbolo universale delle fenomenologie carsiche. Non per nulla le Risorgenze del Timavo, cantate già dai latini, rappresentano nell'immaginario collettivo la fuoriuscita, spesso impetuosa, delle acque contenute nelle numerosissime cavità del Carso, che sono a loro volta alimentate dal Flume Timavo epigeo (il Reka): si inabissa nell'imponente inghiottitio di San Canziano (corrispondente alle Skocjanske Jama in Slovenia) e dopo più di 40 km di percorso ipogeo, praticamente sconosciuto, ricompaiono a S. Giovanni di Duino.

Il "Carso Classico" è una vasta unità morfocarsica che si estende a Sud Est dell'Isonzo fino a Postumia: un altopiano di forma quasi rettangolare, che ha uno spessore carsificato di almeno 500/600 metri e che si estende per circa 600 km², allungato in direzione SE-NW per una quarantina di km e largo una quindicina. Geologicamente appartiene alla "piattaforma carbonatica carsico-friulana", propagine settentrionale della "Placca Adria". La piattaforma è data da una potente successione di rocce prevalentemente carbonatiche, di età da triassica nella zona di radice a eocenea al tetto della serie, sovrastata da una successione torbiditica quarzoso-feldspato-calcarea denominata Flysch. Nel Carso italiano, in particolare, affiorano litotipi carbonatici (calcari e subordinatamente, dolomie) di età compresa tra il Cretacico superiore e l'Eocene inferiore.

Il modello idrogeologico corrispondente riconosce in linea di massima tre settori idrogeologicamente significativi: uno in cui le acque passano da epigee (in quanto defluenti in valli non carsiche) a ipogee (in quanto inghiottite in profondità) e vanno ad alimentare le acque di fondo carsiche; uno (in pratica l'altopiano carsico) in cui queste acque scorrono in profondità con articolati percorsi lungo vie di drenaggio più o meno incarsite e sono ulteriormente incre-
mentate dal pericolo legato all’alimentazione superficiale data dalle precipitazioni; uno più prettamente sorgentifero in cui le acque vengono alla luce e/o defluiscono in mare. Quest’ultimo settore corrisponde all’area che ospita un paio di laghi e numerose sorgenti, fra cui le Risorgive del Timavo.

La piovosità media annua sul Carso triestino è di 1350 mm con massimi in novembre e minimi in febbraio. La temperatura ha in inverno un valore medio di +3,5 °C e durante i mesi estivi di +19,5 °C; la media annuale è di 12 °C.

Il Carso è l’espressione di un carsismo relativamente maturo che si evolve da quasi una decina di milioni d’anni: le forme superficiali iniziali sono ormai quasi irriconoscibili. Le cavità preservano rare morfologie primate, modificate da depositi di riempimento, crolli, concreszioni di tutti i tipi, che a loro
volta nascondono approfondimenti per variazioni del livello di base e adattamenti ai movimenti tetttonici. A tale proposito due sono in Italia le cavità più interessanti: la Grotta C. Skilan (5070/5720VG), che si apre nei pressi di Basovizza e consiste in oltre 6 km di sviluppo per 380 m di profondità (presoché coincidente con il livello del mare!) e la Grotta G. Savio (5080/5730VG), 4 km di gallerie e belle sale in destra del Torrente Rosanera. Solo l’Abisso di Trobiciana (3/17VG) e la Grotta Meravigliosa di Lazzaro Jerko (2305/4737VG) raggiungono con certezza le acque di rami del Timavo ipogeo; mentre poche altre sono interessate dalle acque di falda solamente durante le massime piene - Grotta Lindner (829/3988VG), Skilan e dei Cristalli (781/3960VG), Abisso Massimo (4136/5288VG).

Il sistema sorgentifero è dato essenzialmente dalle Risorgive del Timavo a San Giovanni di Duino, i laghi di Dobordo e di Pietrossa, dalle sorgenti minori che alimentano i canali Lisort e Moschenize (un areale di una ventina di km²) e dalle sorgenti marino-costiere sparse lungo la costa del Golfo di Trieste da Aurisina a Duino (circa 7 km). Si tratta di acque che provengono da acquiferi diversi ma idraumaticamente interconnessi, con una portata complessiva media stimabile in 40 m³/s, massima di circa 175 m³/s. Indagini speleo-subacquee nelle Risorgive del Timavo hanno messo in luce un articolato e complesso sistema di cavità allagate che sono state rilevate fino a 83 metri s.l.m. e per più di 1900 metri di sviluppo.

Le particolari caratteristiche geologiche, la collocazione geografica, la prolungata esposizione agli agenti atmosferici, hanno portato il Corso a rappresentare l'essenza del carisma, superficiale e profondo.

In superficie, durante la decina di milioni d'anni di evoluzione, le acque hanno disolto milioni di metri cubi di roccia, imprimendo al territorio un aspetto unico: oggi migliaia di doline movimentano la superficie conferendole
un aspetto tormentato e migliaia di grotte si sviluppano all’interno della massa rocciosa.

Certo, non tutte le doline hanno dimensioni significative, ma ve ne sono centinaia larghe e profonde tanto da costituire unità morfologiche, e quindi paesaggistiche, a sé stanti. Non deve sfuggire infatti la peculiarità paesaggistica della dolina, depressione in cui l’inversione del rilievo e della temperatura legata alla morfologia creano habitat diversi da quelli del territorio circostante. Non deve sfuggire il particolare ambiente che si crea all’ingresso delle cavità maggiori, ove il microclima, l’attenuarsi della luce, le forme della roccia, l’umidità, creano ulteriori micropaesaggi suggestivi.

Statisticamente, nel limitato settore di Carso italiano, le depressioni doliniformi occupano più di 30 km² complessivi (circa il 10% di territorio dell’altopiano), sono circa 6000 e di esse circa 1600 hanno diametro fra 100 e 50 metri, quasi 400 hanno diametro superiore ai 100 metri.

Più di 3000 sono le cavità note ed esplorate: di esse almeno 200 sono profonde più di 100 metri e più di 350 si sviluppano planimetricamente almeno 100 metri. Quasi un migliaio sono i pozzi di dimensioni non importanti (pochi metri di profondità) e numerosissime sono le piccole gallerie di minime dimensioni (pochi metri quadrati), ma almeno una decina di cavità si sviluppa per migliaia di metri, raggiungendo profondità significative e centinaia di metri, costituisce mondi e paesaggi ipoge spettacolari e complessi.

La costa alta conferisce al passaggio terra-mare una configurazione unica: la falsea di Duino è una morfologia carsica fra...
le più intriganti, espressione altissima del
cunnubio fra roccia calcarea, acque dolci e
salate, clima temperato marittimo, vegeta-
zione pioniera. Le balze rocciose, le minu-
nte forme di dissoluzione, gli agglomerati di
vegetazione, il mare creano un paesaggio a
annotazioni affascinanti.

La falesia di Duino caratterizza il tratto
settentrionale del Golfo di Trieste ed è l’unico
esempio di falesia calcarea dell’Alt Adriati-
co italiano, geneticamente legata alla vertica-
lizzazione degli strati calcarei intenzamen-
te carstificati che vengono a trovarsi a picco sul
mare ed hanno alta energia di rilievo per fatti
tettonici. Al piede della falesia, sul fondale
marino, fra depositi di crollo e sabbie “affiora-
rà” il flysch, su cui la Piattaforma carbonatica
del Carso è sovriscorsa. Sempre sulla falesia,
nel settore occidentale e in quello orientale,
poco al disotto del livello marino è presente
un solco di battente. La falesia raggiunge i
90 metri di altezza e si sviluppa dalla Baia
di Sistiana al porticciolo di Duino. L’orlo può
essere in parte (l’altra parte è in terreno priva-
.to) percorso seguendo il sentiero Rilke, lungo
quella che tradizionalmente si vuole fosse la
passeggiata che il poeta tedesco Anton Maria
Rilke compiva abitualmente durante il suo sog-
giorno al Castello di Duino (1911-12), ospite
della principessa Maria della Torre e Tasso.

Lungo il sentiero, da cui si gode di un’amplia
panoramica che spazia dal Golfo di Trieste, a
Capodistria e alla costa istriana, alla Laguna
di Grado, alla foce dell’Isonzo, si incontrano
tutti i tipi di morfologie carsiche epigee, il cui
biancore spicca fra il colore del mare e quello
della variegata particolare vegetazione. Tra le
diverse forme si riconoscono scannellature e
vaschette di corrosione, fori di dissoluzione
e alveoli di corrosione, griz e campi solcati
con forme a banchi e a blocchi.

La tettonica, con piccole faglie perpen-
dicolarì alla linea di costa dà origine, per
erosione differenziata a pinnacoli, ripidi ca-
naloni, lame, torrioni, su cui nidifica il raro
falco pellegrino.

Le altre forme epigee più rappresenta-
tive, con la Val Rosandra che fa comunque
parte a sé, sono indubbiamente il polje con il
Lago di Doberdò, la dolina Risalce presso Au-
risina, la dolina Segino Dol presso Prosecco,
le doline Skołudniki e Kopriunik ed i campi
solcati di Borgo Grotta Gigante, la conca e
stagni di Percedoli con i vicini campi solcati
di Brestanovizza, i campi solcati fra Silvia e
San Pelagio, gli hum di Monrupino.

Il Lago di Doberdò, occupa il fondo di
un polje ed è uno dei pochi laghi carsci esi-
stenti in Italia, l’unico nella nostra Regione,
sicuramente uno dei più grandi al livello inter-
nazionale. È citato da tutti i libri di geografia
come esempio classico di lago carsico non-
ché unico dei pochi esempi in Europa di lago-
stagno. Inserito in un eccezionale ambiente
carsico, è caratterizzato dalla presenza di
una serie di inversae o sorgive-inghiottitoio
(funzionano alternativamente da sorgenti du-
rante la piena e da inghiottiti durante la fase
di svuotamento) che si aprono sul fondo e dal
vicino Lago di Pietrarossa, e rappresenta un
Concrezioni e crolli nelle grandi gallerie della Grotta impossibile

(foto archivio C.G.E.B.)
paesaggio splendido e particolare in tutte le stagioni. Il fondo del Lago è costituito da una spessa copertura torbosa prodotta dalla fitta vegetazione a Cannuccia Palustre e da pochi metri di argilla su roccia calcarea.

Mette in luce le acque dell’acquifero carsico: privo di fiumi immersi ed emissari, ha un regime molto variabile, tanto che la superficie dello specchio d’acqua può variare da 80 m² a 400.000 m² in pochi giorni! In condizioni di magra la superficie del lago è posta a circa 3 m s.l.m. (statisticamente in febbraio e luglio), mentre in condizioni di piena raggiunge i 5 m, eccezionalmente i 9 m (statisticamente in ottobre e giugno).

A poche distanze dall’abitato di Borgo Grotta Gigante, si estendono campi solcati che offrono, per dimensioni, tipologia, frequenza, uno fra i più completi esempi di quanto e cosa la dissoluzione carsica può su superfici calcaree suborizzontali poco suddivise. A completare l’interesse per l’area, negli immediati dintorni si aprono alcune delle più ampie e profonde doline del Carso triestino, alcuni ingressi di cavità, alcune roofless caves (tracce di antiche gallerie carsiche oggi esumate). Il tutto immerso nella classica boschaglia carsica.

In particolare le kamenitze hanno dimensioni che rendono quest’area l’emblema della casificazione superficiale. Sono presenti inoltre praticamente tutte le piccole forme carsiche possibili: karren di tutti i tipi, solchi carsici ampi e estesi, profondi crepacci che originano piccoli ponti di roccia, fori di dissoluzione nelle alveoli di corrosione, forme di dissoluzione sottocutanea, hum e funghi.

Al centro dell’altopiano, fra gli abitati di Silvia e di San Pelagio, si estendono interessanti campi solcati in cui, favorite dalla purezza dei calcai, dalla ghiacciura della stratificazione poco inclinata e dall’alternanza di banchi compatti e livelli stratificati, si sviluppano con frequenza notevole tutte le possibili piccole forme di corrosione superficiale. Karren, solchi e crepacci carsici, fori di dissoluzione e piccole kamenitze interessano le superfici esposte delle bancate, grige da grossolane a mediamente pezzate si sviluppano lungo fasce parallele in corrispondenza degli intervalli calcarei più suddivisi. Sul bordo settentrionale del campo solcato si apre, al fondo di una dolina (in verità una “roofless cave” cioè una galleria “scoperchiata”) una delle più interessanti cavità del carso triestino, la Grotta Federico Lindner (829/3988 VC). La cavità consiste in una articolata galleria principale inclinata verso Sud Ovest, è riccamente concrezionata e raggiunge i 10 metri sul livello del mare, per cui è occasionalmente allagata durante le piene del Timavo sottotetto.

A Monrupino, non lontano dalla Rocca con il Santuario ed i resti del castelliere, si ergono i cosiddetti Torrioni di Monrupino, singolari formazioni, alte più di 10 metri, costituite da calcari brecciatolati molto resistenti alla degradazione meteorica. Si tratta del più bel esempio di hum in regione. I torrioni (hum) sono rettili, rimasti isolati per l’azione dissolutiva delle acque meteoriche che per corrosione differenziata abbassano la superficie lasciando in evidenza i volumi rocciosi calcarei meno corrodibili. Costituiscono una testimonianza delle antichissime superfici carsiche, più elevate di quanto non lo siano ai nostri giorni: ricordiamo che in clima come quello attuale, le rocce carbonatiche si abbassano di circa 2,3 mm ogni cento anni e che quindi ci vogliono almeno 200.000 anni per generare forme significative!

Fra le cavità, vista la dovizia, è difficile scegliere: la Grotta Gigante (2/2VG) è attrezzata al pubblico già dal 1908 ed è stata inserita nel Guinness dei Primati per avere la caverna turistica più ampia del mondo; l’Abisso di Trbiciano (3/17VG) è la verticale più famosa con un rango del Timavo al fondo; la Claudio Skilan (5070/5720VG) è la più estesa con ampie caverne e splendide concrezioni; il Sistema Ipogeo del Monte Steina (Gallerie 290/402VG, Fessura del Vento 930/4139VG, Martina 4910/564VG, Savi 5080/5730VG, ...) è di un certo interesse speleologico ed idrogeologico; la Grotta Impossibile (5680/6300VG) è recentemente assunta a grande notorietà in quanto occasionalmente scoperta durante i lavori di costruzione della Grande Viabilità Triestina. Solo la Grotta Gigante è turistica, quasi tutte le altre possono essere visitate unicamente se accompagnati da esperti speleologi.

I geositi nel geosito, un paesaggio unico

La Val Rosandra, ubicata in provincia di Trieste ai confini meridionali del Carso Classico è
una valle profondamente incisa in calcari del Terziario, dalla morfologia condizionata dalla litologia e dalla tettonica, cioè da faglie e da rocce diverse su cui l’erosione selettiva ha creato una singolare idrostruttura.

La Val Rosandra è l’unico esempio di valle fluviovasca del Carso triestino con idrografia superficiale ed una delle poche in Italia. Il torrente che la forma prende origine poco prima di uno spettacolare salto d’acqua di oltre 30 metri dalla confluenza di due corsi d’acqua le cui sorgenti si trovano in Slovenia: il Rio Gresa e il Torrente Glinščica. Complessivamente il bacino a monte della cascata, quasi interamente scavato nei depositi silico-clastici del flysch, assicura al Rosandra porte anche intense durante i periodi piuvosi.

In corrispondenza dell’abitato di Botazzo, si ha il passaggio tra il flysch ed i calcari, evidenziato da una suggestiva cascata di una trentina di metri. Dopo la cascata il Rosandra scava una profonda forra in roccia, ricca di rapide, marmitte, cascatelle, meandri incassati e vasche, mentre si verificano le prime perdite di subalveo e parte dell’acqua va ad alimentare la falda sotterranea. L’alveo cambia continuamente di direzione seguendo i principali sistemi di fratturazione presenti nella massa rocciosa fino all’abitato di Bagnoli della Rosandra, dove le pendenze diminuiscono ed il torrente incide le sue antiche alluvioni, fino a sfociare in mare oltre la Piana di Zaule.

Le vedette di Moccò e di San Lorenzo offrono una visuale privilegiata sui versanti che incombono sul Torrente Rosandra, tutti movimentati da scarpate e balze rocciose, strapiombi e guglie, falde di detrito e grandi blocchi mobilitati, espressioni di una litologia varia e di una tettonica complessa.

Sono infatti le numerose faglie che imprimono ai versanti notevole energia, consentendo all’erosione selettiva di esacerbare le forme. La stessa chiesetta di Santa Maria in Siasir è posta sul corpo di un’antica frana generatasi per scivolamento pianare lungo il fianco settentrionale del Monte Carso.

È la tettonica la padrona del paesaggio. Il crinale è impostato su una faglia, il Monte Carso è l’espressione morfologica di un anticlinale, il Rosandra è in parte guidato da una sfinclina, la conca di Draga Sant’Ella è una sfinclina con un fianco fagliato a forbie.

Il Torrente Rosandra è il morfotipo carso epigeo rappresentativo, il quale incide nei bianchi calcari forre, meandri incassati, marmitte e crea cascate e rapide.

Date le peculiari caratteristiche geologiche e geomorfologiche, vista la storia geologica antica e recente della Val Rosandra, non c’è da stupirsi che all’interno dei rilievi calcarei che la bordano, siano numerose le cavità: s’incontrano ampie gallerie e angusti passaggi, grandi sale riccamente concrezionate e minuscoli vani in roccia levigata, concrezioni di tutti i tipi e potenti depositi di riempimento testimoni di flussi imponenti e vicissitudini geologiche, depositi fossili e preistorici con tracce di storia recente.

Le cavità che si aprono nei circa 6 km² di territorio italiano sono ben 112; si sviluppano per complessivi 19198 metri. La più profonda è la Fessura del Vento con 143 m di dislivello; la più sviluppata in lunghezza (ma anche la seconda per profondità con 108 m) è la Gualtiero Savi con 4180 m, seguita dalla Fessura del Vento con 2626 metri. Queste due cavità, con la Grotta delle Gallerie e la Grotta Martina Cucchi, vanno considerate come facenti parte di un unico vasto ed articolato complesso di oltre 7 km di sviluppo, risultato di un’evoluzione carso-genetica guidata dalle condizioni geologiche ed ambientali veramente affascinante.

La Grotta degli Orsi (5075/5725VG), la Grotta di Crogle (535/2716VG) e l’Antro di Bagnoli (76/103VG), che si aprono nel Monte Carso, fanno a loro volta parte della complessa evoluzione del vicino Bacino di Occisla in Slovenia dalla storia anch’essa interessante e varia. I depositi storici e preistorici, le ampie ed estese gallerie riccamente concrezionate, i laghetti sotterranei, le grandi sale dal soffitto a “cassettoni” ingombrate di massi e concrezioni, i depositi fluviali intrappolati nei cunicoli e nei pozi, gli altri speleotemi, le sorgenti carseiche, le morfologie carseiche e quelle erosive, conferiscono alla Valle un fascino ambientale veramente unico, costituendo con le altre peculiarità fisiche, naturali e storiche un patrimonio naturale di gran valore.

L’interazione fra faglia, vegetazione e locazione geografica contribuisce a fare della Val Rosandra un geosito di valenza mondiale legato ad un paesaggio unico ed affascinante.
Paesaggi carsici nel Friuli Venezia Giulia

A cura di:
Franco CUCCHI e Luca ZINI
Dipartimento di Scienze Geologiche Ambientali e Marine

e di:
Fabrizio MARTINI, Walter BOSCHINI, Giacomo CASAGRANDE,
Barbara GRILLO, Anna ROSSI, Enrico ZAVAGNO

Coordinatore progetto:
Lucio SACCARI
Pedro BONETTI
Servizio tutela beni paesaggistici, Direzione centrale pianificazione territoriale, autonomie locali e sicurezza
Redatto a cura dell'Università degli Studi di Trieste.
Dipartimento di Scienze Geologiche, Ambientali e Marine
su commissione della Regione Autonoma Friuli Venezia Giulia,
Direzione centrale pianificazione territoriale, autonomie locali e sicurezza
Servizio tutela beni paesaggistici

Coordinamento:
dott. arch. Lucio SACCARI

Redazione:
prof. Franco CUCCHI e dott. Luca ZINI, del Dipartimento di Scienze Geologiche, Ambientali e Marine dell'Università di Trieste

Con contributi di:
Fabrizio MARTINI (Università di Trieste, Dipartimento di Scienze della Vita), Walter BOSCHIN, Giacomo CASAGRANDE, Barbara GRILLO, Anna ROSSI, Enrico ZAVAGNO

Fotografie:

Rileve:
modificati dal Catasto delle Grotte del Friuli Venezia Giulia

Disegni:
Luca Zini

Cartografia:
grafica di Rodolfo RICCAMBOSSI, foto di Giacomo CASAGRANDE (paesaggio del Monte Canin) e Archivio C.G.E.B. (il tratto finale della Grotta Noè)

Stampa:
Stella Arti Grafiche - Trieste

Stampato a cura e per conto della Regione Autonoma Friuli Venezia Giulia, con un contributo del Dipartimento di Scienze Geologiche, Ambientali e Marine dell'Università di Trieste

Volume omaggio, vietata la vendita

© Università degli Studi di Trieste
Dipartimento di Scienze Geologiche, Ambientali e Marine
Tutti i diritti riservati
A cura di:
Franco CUCCHI e Luca ZINI
Dipartimento di Scienze Geologiche Ambientali e Marine

e di:
Fabrizio MARTINI, Walter BOSCHIN, Giacomo CASAGRANDE,
Barbara GRILLO, Anna ROSSI, Enrico ZAVAGNO.

Coordinamento progetto:
Lucio SACCARI
Paolo BONETTI
Servizio tutela beni paesaggistici, Direzione centrale pianificazione territoriale,
autonomie locali e sicurezza